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Abstract

Two approaches are developed to analyze the dynamic behavior of flexible multibody

systems. In the first approach each body is modeled with a modal methodology in

a local non-inertial frame of reference, whereas in the second approach, each body is

modeled with a finite element methodology in the inertial frame. In both cases, the

interaction among the various elastic bodies is represented by constraint equations. The

two approaches have been compared for accuracy and efficiency: the first approach is

preferable when the nonlinearities are not too strong but it becomes cumbersome and

expensive to use when many modes must be used. The second approach is more general

and easier to implement but could result in high computation cost for large system.

The constraints should be enforced in a time derivative fashion for better accuracy and

stability.
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Chapter 1

Introduction.

A comprehensive analysis methodology for dynamic systems involving several elastic

bodies must include a scheme to efficiently deal with the interaction between the various

elastic components. For instance, in a conventional helicopter, the elastic rotor or rotors

interact with the elastic fuselage, whereas in a tilt rotor configuration, the elastic rotors

interact with the flexible wings and fuselage. The impact of this interaction is important to

an accurate prediction of rotor loads, and essential when attempting to predict instabilities

such as ground or air resonances since rigidly mounted rotors do not exhibit such

instabilities. It is convenient to think of the helicopter as a multibody elastic system,

i.e. a collection of elastic bodies mutually interacting at "hinges".

A fundamental difficulty in the analysis of a multibody system is the evaluation of its

total kinetic energy, as it involves the calculation of the inertial velocity of each material

point of the system. If the position of all material points is measured in a given inertial

system, this task is trivial, however, it is often convenient to use a local coordinate system

to represent the initial geometry and deformation of each elastic body. The velocity of

a material point relative to this local frame is easily to obtain within the frame work of

a finite element discretization or modal representation, however, the inertial velocity of

this material point also involves the motion of the local frame with respect to an inertial

frame of reference. This additional motion can be taken into account through various

schemes, for instance hierarchical representations, or multibody schemes.

A hierarchical representation involves a hierarchy of reference frames starting with

an inertial frame. The motion of each frame is described with respect to the frame that is

immediately superior in the hierarchy. For a helicopter, a typical hierarchy could be as

follows: inertial frame -- to -- airframe system -- to -- blade system -- to _ deformed

blade system. Each level of the hierarchy involves a rotation matrix which gives the

instantaneous position of a frame with respect to that immediately superior. Each rotation

matrix is quadratic in terms of the Euler Parameters (other finite rotations parameters

could be used but the rotation matrix will remain at least quadratic). Since our typical

hierarchy involves four levels, the position and inertial velocity vectors of a material

particle will involve nonlinear terms up to the 9th order, resulting in a kinetic energy

expression with nonlinear terms up to the 18th order. Of course, some simplification could

be introduced: for instance in level flight, the inertial -- to -- airframe transformation

becomes a constant, or, if the elastic deformations of the blade are linearized, the blade

-- to _ deformed blade transformation becomes linear. However, a general analysis

methodology should be able to deal with large rotations at all levels.

This simple example points out the two major difficulties associated with hierarchical

models: first, these models are difficult to handle and require advanced data base concepts

for practical implementation, and second, very high order nonlinear terms appear in

the analysis resulting in a very large number of coefficients. In a modal analysis, the

number of coefficients is N n, where N is the number of modes, and n the power of the
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nonlinearities. For a 12 mode model involving 18th order nonlinearities 2.66 1019 terms

will be generated, requiring 2.03 1014 Mbytes of storage on a computer. Of course the

number of operations involved in manipulating the model grown accordingly. It is clear

that such model are beyond the reach of even the most powerful computers, and would

require exorbitant amounts of computation.

Two alternative approaches will be pursued in this work that avoid hierarchical

representations. In both approaches, the dynamic system is modeled as a collection of

flexible bodies ( airframe, wings, blades, etc...) that are connected together at a number

of points where kinematic constraints are enforced. Typical kinematic constraints are

spherical, universal and convolute joints, or rigid links. In the first approach each elastic

body is described in a local coordinate system which motion is directly related to an

inertial frame through three rigid body translations and thre_ rigid body rotations. Hence,

the inertial position vector of any material particle in that elastic body involves a single

rotation matrix only, allowing an easy evaluation of all inertia terms.

Since a local coordinate system is used, the elastic deformations of the body can

be represented in a modal fashion, more specifically a finite element based modal

analysis technique will be used which yields a Lagrangian expression involving quartic

nonlinearities only.

In the second approach, all elastic bodies are described directly in a single inertial

system. This is by far the simplest formulation, however, it rules out the use of a modal

representation, and requires a parametrization of the finite rotation variables that allows

arbiu'arily large rotations ( in this work the Milenkovic parameters are used.)

Chapter 2 presents a review of the beam model which will be used throughout this

work. The next two chapters deals with the modeling of a single elastic body: Chapter 3

presents the modal reduction scheme for the finite element model, and chapter 4 compares

the predictions of modal models with that of full finite element models. The kinematic

constraints to be applied between elastic bodies is the focus of chapter 5. Chapter 6 briefly

describes the full finite element modeling. Finally conclusions and recommendations are

presented in chapter 7.
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Chapter2

Finite Element Modeling of Rotor Blades

Section 2.1: Introduction

The kinematics involved in the nonlinear static and dynamic analysis of naturally

curved and twisted blades are complex since both the deformed and undeformed config-

urations of a blade are three dimensional. Moreover, laminated composite materials are

increasingly used for the construction of such structures, causing several non-classical

effects of beam theory to become more pronounced [2-1,2].

In many applications, large displacements and rotations of the blade will occur;

however, the strain level remains low. Fatigue life is indeed a major concern; hence, the

operating strain level must remain well within the linear-elastic range of the material. As

a result, most analyses [2-3,8] are based on a small strain assumption that considerably

simplifies the formulation and resulting equations.

The small strain assumption has important implications. First, the Green-Lagrange

strain components often used in the derivation of nonlinear kinematics [2-4,5] can

be equated to the engineering strain components, and hence the usual stress-strain

relationships of the material can be used. Second, the changes in surface area of

a differential volume element due to deformation are neglible. Finally, the strain-

displacement equations can be considerably simplified, since all second order terms (i.e.,

strain square terms) can be neglected.

In this chapter, consistent swain-displacement expressions are derived which provide

the basis of the finite element approximation of the non-linear behavior of naturally

curved and twisted blades undergoing arbitrarily large deflections and rotations.

Section 2.2: Geometry and Kinematics of Blade Elements

Consider a namraUy curved and twisted beam depicted in Fig. 2.1.1 The triad _'1, _'2, _'3

is fixed in space and the triad gl, g2, _'3 is attached to a reference line along the axis of

the beam. gl is chosen tangent to the reference line and g2, ga define the plane of the

cross-section. The curvilinear coordinates along this triad are zl, z2, x3 respectively.

The position vector of a particle of the beam in the undeformed configuration is:

e =  '(zl,z2, x3) (2.2.1)

After deformation the same particle has a position vector:

al_ __-- ./_ (X1,:C2,2_3) (2.2.2)
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Figure 2.1.1. Geometry of the Beam Before and After Deformation
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The corresponding vectors at the reference line are:

= _ (z_,O,O)

/_0 = /_0 (zl,0,0) (2.2.3)

and the displacement vector of the reference line is given by:

ff = /_0 - r_ (2.2.4)

The base vector [2-9,10] in the undeformed and deformed positions respectively are

defined as:

= r_ and Gi = /_i (2.2.5)

where the notation (-),i means derivative with respect to zi. At the reference line the
base vectors are:

d_ = r_,i and F-4 = t_,i (2.2.6)

gi forms a triad since the derivatives in (2.2.6) are taken with respect to the natural

coordinates of the beam. The triad _ can be viewed as a rotation of the basic reference

triad zi through a given rotation matrix tT(zl) such that •

e3 z3J

The derivatives of this triad are readily calculated as •

[0-k3
e3 k2

k3 -k2 [e_

o kl
-ka o Le3

(2.2.7)

(2.2.8)

where the notation ()' means derivative with respect to 21; kl is the natural twist (or

pre-twist), k2 and k 3 are the natural curvatures (or pre-bends) of the beam. The position

vector _ of an arbitrary point of the beam can now be written as:

hence the base vectors become:

9-1 "- V/'ffe'l -- x3kle_ + Z2kle_

where

= 1 - 22k3 + 23k2

The metric tensor is obtained as gij = _/• 9'j and its determinant is g.

(2.2.9)

(2.2.10)

(2.2.11)
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The fundamental assumption in beam theory is that the cross-section does not deform

in its own plane. This means that the base vector L'2 and E3 which are in the plane of the

cross-section after deformation simply correspond to a translation and rotation of the base

vector _'2 and _'3 of the original configuration. Note that arbitrarily large displacements

and rotations can occur but no deformation of the cross-section is allowed i.e. ff¢ and

J_3 are mutually orthogonal unit vectors. In contrast, E1 is no longer a unit vector nor

is it orthogonal to/_2 and J_3, as axial and shearing strains are allowed. Now a new

orthogonal triad _i is defined as follows:

The vector/_1 can be resolved in this triad as:

(2.2.12)

/_1 = (1 + ell)_ 3I- 9-e12e] + 2e13e 3 (2.2.13)

At this point, e11, e12, el3 are the unknowns, and they will be identified later as

strain quantities. Here again the triad _,. can be related to the basic reference triad _'i

through an unknown rotation matrix Te (xl) such that:

"5/= rS (xl)/'_ /
e*3J Lz3J

(2.2.14)

The derivatives of this triad are:

e_
=/_ _ = -z<3 0 z<_ ,j

e_ K2 -K1 0 e_
(2.2.15)

where/fl is the twist, K2 and K3 are the curvatures of the deformed beam. Since the

cross-section does not deform in its own plane, the position vector/_ in the deformed

configuration can be written as:

= _o+ :_,g2+ :_, + ,_(:_)_ (x_,:_,)_ (2.2.16)

The first three terms represent large translations and rotations of the cross-section and

can be geometrically interpreted as plane sections remaining plane, but not necessarily

normal to deformed axis of the beam(i.e, a Timoshenko Beam Theory). The last term

represents a small displacement in the direction of _, that is out of plane warping of

the cross-section chosen as the torsion related warping displacement f_. This warping

displacement is selected as the Saint-Venant torsional warping functions[2-1]. _ (z l) is

an unknown function characterizing the magnitude of the torsional warping. Combining
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(2.2.5), (2.2.6), (2.2.13) and (2.2.15), the base vectors of the deformed configuration

61 = [(1+ 11)- 2zra +x3K2 +¢v,] +[2<2- 3 1]r2
+ [2e13 -4-x2K1] _3

63 = +

become:

(2.2.17)

In (2.2.17), all higher terms containing warping quantities have been neglected.

Section 2.3: Strain Analysis

The Green-Lagrange strains fij in the curvilinear coordinate system [2-9,10] are

given as fij = ½ (Gij - gij) where Gij = Gi" Gj is the metric tensor in the deformed

configuration. It is straightforward to verify that f22 = fa3 = f23 = 0 as a direct

implication of the indeformability of the cross-section in its own plane. The other strain

compoments are the two transverse shearing strains f12 and fla, and the axial strain f11.

To relate these strains to the strains in the local rectangular coordinate system defined

on the beam axis, the following transformation is needed. Define a local rectangular

cartesian coordinate system yi along _i, then the relation of this rectangular system with

the material coordinate system xy is governed by:

- -z3kl 1 (2.3.1)

Ozj z2kl 0

Now, the strains eij defined in the local rectangular coordinate system _ are obtained as:

OzkOzt

eiy - tgyi_gyj fkt (2.3.2)

Then, the non-vanishing strain components become:

V_el2 -- f12

v e13 = ka

V/'ffell = fll + 2z3klf12 - 2x2klf13

(2.3.3)

The initial curvatures of the beam k2 and k3 are now assumed to be small, i.e. from

(2.2.11):

v_ _ 1 (2.3.4)

In the case of helicopter blade,

chord of the blade
z2k3 -- _ 0

radius of the edgewise curvature

thickness of the blade

z3k2 "- radius of the flapwise curvature
_0
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Note that x,/'ff= 1 for a straight blade. Hence, this assumption is realistic for most of

the practical applications.

The strain components now become:

2e12 = 2e12 - z3t¢l + 6qOl,2 (2.3.5)

2e13 = 2512 + z2tq + 6_Pl,3 (2.3.6)

1_ 2

ell -'e--ll -4- _Cll -- x2 (1 Jr ell)/¢3 "b x3 (1 4- ell) t¢2 "4- _'_1 -1t- 6kl (x3_1,2 - x2qPl,3)

1 )2 I 1+ (2a12- z3 1 + (2 13+ m2.1)2+ (z2k3 - m3 2)2
(2.3.7)

where tci = Ki- ki

To complete the formulation, the coefficients e-"_', e-'_ i el"S in (2.2.13) must now be

related to the displacements and rotations. Differentiating (2.2.4) with respect tO z l and

using (2.2.6), we obtain:

E1 = e_ + if' (2.3.8)

or

/_1 = (u_ + t11) /_ + (u S + t21) /'2 + (u_ + 13,) /_ (2.3.9)

where ui are the components of the displacement vector in the basic reference triad _i,

and tij the components of the rotation matrix t. On the other hand, combining (2.2.13)

and (2.2.14) yields another relation for/_1 that can be identified with (2.3.9) to obtain

[ I I 12512 = T? u_ q- t21

2513 u 3 + 131

(2.3.10)

This completes the swain analysis. It is important to note that this development is valid

for arbitrarily large displacements, rotations and strains. The unknowns of the problem

are the three displacements ui, the rotation parameters implicitly defined in the rotation

matrix Te, and torsional warping amplitude.

In the derivation of strain expressions in (2.3.5-7), no assumptions were made about

the magnitudes of the displacements, rotations or strains; hence, these expressions are

valid for beams with small initial curvatures undergoing arbitrarily large displacements,

rotations and strains. On the other hand, later in the derivation of the total potential

energy expression in (2.4.17), strain components will be assumed small enough to render

negligible changes in area due to deformation, and to equate the Green-Lagrange strains

to engineering strains. This requires both axial and shearing strains to be much smaller

than unity, i.e. e<< 1, and 7 << 1. However, nothing is assumed about the relative
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magnitude of e versus 7- For consistency, the same assumptions must now be introduced

to the strain-displacement equations (2.3.5-7) to obtain:

ell --ell -- X2_3 + :/:3t_2 + _t_o1 + _kl (:g3_1,2 - x2qo1,3)

1 1 (2.3.11)

+ (2 12 - z3,¢1)2+ (2 13 + z2 1) 2

712 = 2e12 -- x3kl + _q01,2 (2.3.12)

713 = 2e13 -[- :r,2kl + _Ol,3 (2.3.13)

The last term appearing in (2.3.7) is negligible since it represents the square of the axial

components due to bending.

If we now introduce the additional assumption that axial and sheafing strains are

of the same order of magnitude, then 72 << e, and the two last terms in (2.3.11) can

be neglected, since they are squares of the sheafing strain components in (2.3.12) and

(2.3.13), respectively; this yields:

ell = ell -- Z2K3 + X3_2 + _lqO1 + _kl (z3qOl,2 - z2_Pl,3)

712 = 2e12 -- z3t¢l + ¢5q01,2 (2.3.14)

713 = 2_13 + x2_¢1 + &Pl,3

These expressions are often successfully used as the basis for beam models involving

large displacements and rotations, but small strains [2-4 to 8, 2-11,12]. However, it is

interesting to note that one additional assumption was required (7 2 << e), that might not

be adequate when dealing with highly anisotropic composite materials [2-12].

Section 2.4: Blade Strain Energy Expression (Hellinger-Reissner Formulation)

The strain energy expression for a thin walled beam is:

L

U = _ A_ds dzl (2.4.1)

o r

where _ = (e, 7); A is the stiffness matrix; L the length of the blade; 1" the contour of the

thin-willed section, described by a curvilinear variable s (see Figure 2.4.1). Consistent

with the assumption of a cross section that does not deform in its own plane, the only

non-vanishing strain components are the axial strain e and the sheafing strain 7- Clearly,

+ z+713 (2.4.2)e = en and 7 = z27n +

where ()+ denotes a derivative with respective to s. A set of strains _e = _ is now

introduced into (2.4.1) to yied:

L

U=//[2e.___TATe-nT(e-e_)]dsdzl
o F

(2.4.3)
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where the condition _e = tt was enforced by means of a set of Lagrange Multipliers _n.

Variation over _e yields _n = A e which yields the physical meaning of n as the internal

stress flows _n = (n, q) , where n is the axial stress flow and q the shear stress flow.

Finally the strains _e are eliminated from (2.4.3) using e = A-]_n to find:

L

u = f f rnT[._.:.£--_l nT a-l n]__ ds dxl (2.4.4)
0 r

Introducing (2.3.14) into (2.4.2) yields

8 -" ell -- X2n3 -}- Xat_2 -t- hal 61 -- klrqP+l _

_/--" X2q-2e12 Jr" X3-1-2e13 "Jr- rt¢l "11-qOlq'_ (2.4.5)

where r = x2x + - x3z + is the distance from the origin to the tangent to the contour F

(see Figure 2.4.1); _p+ + x+q_l,3 and -rap +-- x 2 _Pl,2 J¢- X3qO1,2 -- X2qO1,3 --

X 2

S

Figure 2.4.1 Geometry of the Thin-walled Cross-section

Note that equation (2.4.5) imply the small strain assumption and can be written as:

[10 07 = 0 x + x + _+ r 0 0 _E (2.4.6)

where

ET= (el, e2, e3, e4, t¢1, _2_ t_3, _4 )

and

el = ell, e2 = 2e12, e3 = 2e13, e4 = ¢_, _4 = _t

(2.4.7)
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Introducingtheseequationsinto (2.4.4)andintegratingover the cross-sectionyields:

L

+ e2F2 + e3F3 + e4F4 + tglM1 +/¢2M2 + 1¢3Ma + x4M4]dzl

where

0 (2.4.8)
L

--/f 2[nTA-an_] dsdx,

o F

F F F

F4 = /tp+ (q- klrn)ds , Ml = f rqds ,

F F

M2-/x3nd.q, M3--fx2_2d3, M4 :/qp172d..q

(2.4.9)

F F F

F1 is the axial force, M1 is the torque, F2 and F3 are the shear forces, M2 and M3 are

the bending moments, and finally F4 and M4 are the force and moment, respectively,

associated with the torsional warping induced stresses.

With Reissner's Principle independent assumptions can be made on displacements and

stresses. By analogy to the strain field the stress field is assumed in the following form

(2.4.10)
Ann Anq ]

= [Anq aqqJ BX

where X T = (Xl, X2, X3, X4, I"1, Y2, Y3, Y4) is a vector of unknown stress parameters,

_2 and ¢P3 the transverse sheafing related Saint-Venant warping functions[2-1]. Intro-

ducing (2.4.10) into (2.4.9) and integrating over the cross section yields

F = A X (2.4.11)

where F T = (F1, F2, F3, F4, M1, M2, M3, M4) and A is a matrix of cross-sectional

coefficients. Finally the stress assumptions (2.4.10) are introduced into (2.4.8) to find:

L

U =/[(elF1 + e2F2 + esFa + e4F4 + xaM1 + _2M2 + xsM3

xr*

+ e;4M4)
d
o (2.4.12)

1

- 7 F_S.HF] dxa

where the compliance matrix is H given by

H = A-TDA -a (2.4.13)
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where

D = fB T [An,,[A,g
r

Finally, (2.4.12) can be written as:

A,*q ] B ds (2.4. 14)
Aqg J

L

U--/(eTI:'-IFTHF) dxl (2.4.15)
0

where eT = (el,e2, e3, e4, _¢l,t_2,_3, t¢4) are the sectional strains, F T =

(F1, F2, F3, F4, M1, M2, M3, M4, Fs) are internal forces, and the strain-displacement re-

lationships are:

1+el

e2

e3

ill + u]

t21 + u_
t

t31 q- u 3

(2.4.16)

xl K1 - kl [ K, [ q_ ]

_2 = K2- _2 , [u2 = 2c/q_ /
3 K3- k3 Aq LahJ

This nonlinear strain energy expression depends on the displacements and forces:

u = u (_,,£).

It can be expanded using a linearization procedure about a reference configuration, to

yield:

0

Uu/
At_]+ h.o.t}

(2.4.17)

where

and

i !

OU OU
U_ = 0-"__ ; U! = 0-"_ (2.4.18)

0 2 U 0 2U 0 2U

U,_,, = _ ; U,,I= OuOF ; Uff = OF_.OF (2.4.19)
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Section 2.5: Blade Kinetic Energy Expression (Heninger-Reissner Formulation)

'Fictitious'

Position

o

True Position

2

u 1

p
2

1

I
3 R

Inertial Frame

Figure 2.5.1 : Geometry of the Free Beam

Let _ be an inertial reference frame. Consider now an unstrained structure in space

with a triad _i attached at a material point O. To locate the structure, it is convenient to

separate its displacement field into rigid body displacements and elastic displacements.

The rigid body motions define the position of a fictitious, rigid structure, and the elastic

motions are superimposed to yield the true position of the structure. The rigid body

displacement field involves three translations and three rigid body rotations. The rigid

body translations are chosen as the translations of a material point O with an unknown

position vector t5 (t). The rigid body rotations consist of two parts: first, an unknown
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rigid body rotation characterized by a rotation matrix Tr (t), then a known rigid body

rotation with constant angular velocity charaterized by a rotation matrix T ° (t) such that:

which yields:

ja J /3 k z3 kJa

i3

= T°r (t)TT (t)
h

(2.5.1)

(2.5.2)

The elastic displacement field involves elastic displacements ff(zl, t) of the reference

line defined in (2.2.4) and elastic rotations as defined in (2.2.14).

The sum of rigid and elastic displacement fields brings the structure to its actual

position. The fictitious, rigid structure is used as a reference configuration for the

described of the elastic strain field, in a manner identical to that described in section 2.2.

This involves a set of material coordinates zl,z2, z3, the base vectors of the reference

line in the unreformed configuration gl, g2, ga, and the base vectors of the reference

line in the deformed configuration _, _, _.

The position vector of a material point is:

/_ =/5 + r_ + if+ x2e_* + z3_ (2.5.3)

The instantaneous position of a material point on the blade is given by (2.2.16) where

torsional warping related out-of-plane displacements were included, however the inertia

forces associated with this out-of-plane motion are very small and will be neglected here,

resulting in the simplified expression (2.5.3). It is clear that rigid body motions do not

generate any strain field, hence the strain displacement equations (2.3.14), and the strain

energy expression (2.4.12) remain unaffected. However, the kinetic energy expression is

of course affected by the presence of time dependent, rigid body motions.

The time derivative, noted ('), of (2.5.2) yields:

1 :]= (r; r, r,r"+ I'.-2 +
kZ3 zaJ

(2.5.4)

The time derivative of (2.2.14) yields:

q
( -o,r + _;r)---- \ff;r T q- _r

(2.5.5)
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The following skew symmetric angular velocity matrices have been defined: &, and &0,

the unknown and constant rigid angular velocities, respectively, resolved in the _'i system;

w_-*, w,'°* and we-* the unknown, constant, and elastic angular velocities, respectively,

resolved in the _i system. The components of the corresponding angular velocity vectors
0 0 . * * • .0 (W01,can also be defined: w._.r._= (Wrl,Wr2,Wr3), W_x.r"-- Wr2,Wr3), W r = (Wrl,Wr2, Wr3),

0* ( 0. 0. 0.\ * * *
wr...r...= _w_a,w_2,w_3 ) , and finally __we = (w_l,we2 , We3). It is clear that:

* = TTwr and o, T 0w...r._ __ w_ = T i w...r._ (2.5.6)

The position vector (2.5.3) can be resolved as follows:

P1
n=[_ _ 51 e2

t'3 Ex0+ ll[0+[;'1 ,_ ;'3] u0+u2 +[6 _ _] x_
z0 q- u3 x3

(2.5.7)

where p_..T_T= (P1, P2, P3) are the components of the vector /5 in the inertial system.

The inertial velocity of a material particle is found by combining (2.5.7) with (2.5.4)

and (2.5.5), to find:

R=[;a { [ 0+ulg g] TO_Tr_p_ +(_,+_o) Uo+_ +
,/_3 z0 _ u3

[°]+[_* _* _-_*](_;+_'+_;) _.
X3

_2

_3
}

(2.5.8)

The following notations are introduced.

defined as:

First, the rigid translational velocities are

,Vrl]v__r=/v,_ = TO_T? P2 +:_w,
LV,.3 153 --

(2.5.9)

where

v_ .--

Vel

_3e2

Ve3

---- i_2

it3

..b .,_-T w....Lr0 (2.5.10)

0 -(z0 + _,3) (u0+ u2)
_z0+ _,3) 0 -(_0 + u_)

-(y0 + u2) (=0+ u_) 0
(2.5.11)

The total translational velocity is now defined in the _'i system as:

vt = Vr + Ve (2.5.12)
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and in the _ as:

v_ = T/ v_.!

Finally, the total angular velocity vector in the _i sytem is:

* O*

(2.5.13)

(2.5.14)

For (2.5.9) to (2.5.12), the inertial velocity of a material point (2.5.8) becomes:

R=[e-i* _2"-"e3"*]

The kinetic energy of the system is:

L

1

0 F

* * X * qv,1- x2_,3+ 3_,2

Jv72 - x3_,*l

oR. Rdsdxl

Introducing (2.5.12) and integrating over the cross section yields:

L

T-- _ MV_ dxl
0

where the array of total velocities Vt* is defined as:

V__ = (vt*1 * * * *,vt2, vt3,_on,".'t2,_t*3)

and the mass matrix M is given by:

m

0

0
M=

0

m3

--rrt 2

where the mass per unit span is:

0 0 0 m3 --m2

m 0 --ma 0 0

0 rrt m2 0 0

--m3 m2 mll 0 0

0 0 0 rn33 --m23

0 0 0 --rn23 rn22

the inbalance per unit span is:

m=/

r

mi =/pxids

pds

i=2,3

(2.5.15)

(2.5.16)

(2.5.17)

(2.5.18)

(2.5.19)

(2.5.20)

(2.5.20a)
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the moment of inertia per unit span is:

mij = /pzizjds

F

and

i,j = 2,3

roll = m22 + m33

(2.5.20b)

(2.5.20c)

For future reference, it is convenient to write:

Vt_*= A G + V* (2.5.21)

where the matrix A is defined as:

A=

the rigid velocities are:

IT°rTS2I= ITor T r[ TSP

and the elastic velocities are:

W:= ,T o •
T_ tot +tOe

(2.5.22)

(2.5.23)

(2.5.24)

A set of velocities U = Vt* is now introduced into the kinetic energy expression
(5.2.14) to yield

L

T= f [1uT Mu-p*Z(U__.-E)] dxl (2.5.25)

o

where the condition _.U- Vt* = 0 was enforced by means of a set Lagrange multipliers

p_._.*.Variation over U yields p.._*= MU which yields the physical meaning of p* as the

momenta components, measured in the _i system. Finally, the velocities U are eliminated

from (2.5.18) using U = M-lp *, to find:

L

/(p 1 .)T = "-'_*Vt*-2 E_._ ._v.t d:rl (2.5.26)

0

this expression of the kinetic energy is a nonlinear function of the six rigid body velocities

Vr = (Vrl, vr2, V_S,tOrl, tO_2, tO_3), the elastic displacements u.u_and their time derivatives

__, and the compontents p* i.e.:

T = T V(.Vt,u_,it, p* ) (2.5.27)
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The kinetic energy will be used in two way. First, a finite element implementation

of the problem to yield steady equilibrium position of the structure under applied loads

and normal vibration modes. Second a modal approximation to obtain modal equations

of motion. In the finite element implementation which focuses on natural vibration mode

calculations, constant, rigid angular velocities are the only allowed type of rigid body

motion. On the other hand, in the modal approximation the 6 rigid body motions are

unknowns of the problem and describe the rigid body response of the system to the

applied load. For constant rigid angular velocities we have

T = T (u,u',p*) (2.5.28)

this nonlinear expression can be expanded using a linearization procedure. This expansion

is performed about a steady configuration noted u °, p.0, and the rigid angular velocities
0 0 0 to find:are _rl _ C°r2 __r3'

L

where

1

+7[A__ A__ Ap*]

T_ T_ T,.,] A_u
T,,,_ T,_,_ T,_p| ,",,_
T,., T,_p T,,pJ A_.

and

OT OT OT

T_ = a-_ ; T_ = O"-_ ; Tp = a-_

02T 02T 02T

T'"a_= Ou O_. ; T,,_,= Ou_O-"--"_; T"---Z= Ou_Op--

T_a,= 02T 02T 02T

-- O iz __u_ ; T,i_, = O iL O p* ; Tj£ - O p.:. O p_.:*

All these arrays are evaluated in the reference configuration.

(2.5.29)

(2.5.30)

(2.5.31)

Section 2.6: Normality Condition for Euler Parameters

In the two previous sections finite rotations were used, and to keep the formulation

general, the rotation matrix T, only appears in the equations. However, for a practical

implementation, a specific set of rotation parameters must be selected. In this work

the Euler Parameters (see appendixA) are used that are related through the normality

condition. This normality conditon could be enforced using a penalty method, i.e. adding

the following term to sa, ain energy

L

C = _otegdzl (2.6.1)

0
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where a is a large penalty coefficient, and

e9 = q2 + q2 + q22+ q32 _ 1 (2.6.2)

is the normality condition and qi the Euler Parameters. Following the Hellinger-Reissner

approach used in the previous sections, a variable e = egis introduced into (2.6.1) to

yield

L

C = / [_ole2- /_(e-eg)J dxl (2.6.3)
0

where the condition e = e9 was enforced by means of a Lagrange Multiplier A. Variation

over e yields A = ae, hence, the variable e can be eliminated using e = A/a, to yield

L

0

(2.6.4)

It is convenient to interpret this relationship in the following physical terms : e9 is a

fictitious strain, c_ is fictitious stiffness, and A a fictitious force, such that A = aeg.

By selecting a very large stiffness a we drive the strain e9 to zero, i.e. we verify the

normality condition.

The nonlinear constraint expression (2.6.4) can be expanded using a linearization

technique to yield

l[zx r :,aT [C..+7 --] + h.o.t.

(2.6.5)

where

All derivatives are evaluated in the reference configuration.

(2.6.6)
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Chapter 3

Modal Reduction of the Finite Element Model

Section 3.1: Introduction

The versatility and efficiency of the finite element method makes it an attractive tool

for the analysis of helicopter rotor blades. Hodges [3-1] has recently reviewed various

finite element approaches, giving a comprehensive discussion of their assumptions and

features. An analysis including moderate rotations was developed by Friedmann and

Straub [2-3], as by Sivaneri and Chopra [3-2] based on the formulation of Hodges and

Dowell [3-3]. Giavotto et al. [3-4] and Borri [3-5] developed an approach that includes

finite rotations, as well as cross sectional warping deformations. Finally, a model for

arbitrarily large displacements and rotations of naturally curved and twisted blades was

developed in chapter 2.

These various approaches are very attractive because they allow accurate modeling of

rotor blades. The complex kinematics resulting from the large displacements and rotations

can be handled in a rational manner, and the intricate elastic behavior of composite blades

can be treated realistically by introducing transverse shearing and warping deformations,

as well as elastic coupling. However, the cost of such analysis can be prohibitive when

realistic problem must be treated.

Consider a composite blade with varying properties along the span: 100 to 150

degrees of freedom (DOFs) are typically necessary to accurately represent its geometry

and physical properties. This number must appear small, as problems involving 1,000,

or even 10,000 DOFs are routinely solved with large finite element codes. However,

in the case of a helicopter blade, the analyst is interested in determining its nonlinear

static behavior, its dynamic characteristics i.e. its natural frequencies and mode shapes,

its nonlinear, periodic dynamic response, and the stability characteristics of this periodic

response. The first two analysis types are relatively straightforward to handle, but the

latter ones are far more complex.

Consider the prediction of the nonlinear periodic response of the blade using the finite

element in the method [3-6]: the total number of DOFs equals the number of DOFs used

for the spatial model times the number of time stations. If 64 time stations are used, this

will yield 6,400 to 9,600 DOFs to be solved for in an iterative manner, since the problem

is nonlinear. For a gimballed rotor, all the blades must be considered simultaneously

since they will interact, hence a three bladed gimbalie.drotor would require the nonlinear

solution of 19,200 to 28,800 DOFs, rendering the analysisprohibitively expensive.

Additional problems will appear when stability analysis is performed using Floquet's

theory, which is standard tool for dealing with the stability of periodic systems. In this

approach, the stability of the system is assessed from the eigenvalues of the transition

matrix, which is a fully populated matrix of an order equal to twice the number of spatial

DOFs. Considering once again the above example, the transition matrix would be of

order 200 to 300 for a single blade, and 600 to 900 for the gimballed rotor. Furthermore,
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this matrix is often ill-conditioned because the characteristic frequencies of the system

vary over an extremely wide range. For instance, ff six DOFs are considered at each

node of the blade, axial frequencies will be included in the model. Such frequencies are

many orders of magnitude larger than the first flap frequency of the blade, yielding an

ill-conditioned transition matrix. This limitation is inherent to the approach, and will not

disappear with increased computational power.

In view of these numerical difficulties a modal representation appears as a natural

way of reducing the number of degrees of freedom of the problem. In fact modal

approaches have been very widely used to analyze rotor blades [3-7,11], and have the

additional advantage of involving degrees of freedom that have a direct physical meaning.

However, modal approaches are based on an inherent assumption: the motion of the blade

is restricted to the superposition of a smaU number of prescribed modes. Furthermore,

when applied to nonlinear problems, there is no assurance of convergence or accuracy

of the procedure. The goal of this research is to develop a finite element based modal

analysis for rotor blades. The expression finite element based refers to the fact that

a conventional finite element model of the blade is subjacent to the modal analysis

which accuracy can be assessed by reference to this complete finite element model. In

the development of a nonlinear finite element based modal approach, three points are of

particular importance: the type of nonlinearities, their order, and the choice of the modes.

The first two point will be addressed in the present chapter and the latter in the chapter 4.

Consider for instance a nonlinearity of trigonometric type say cosT, appearing in the

strain energy expression ( 7 is an unknown rotation angle). In the modal approximation,

this angle is expanded as 7 = 7i_ hi, where 7 i are the assumed mode shapes, _,i the

generalized coordinates, and summation over all assumed modes is implied by the

repeated indices. To evaluate the strain energy, the expression CosTi_ i must then be

integrated along the span of the blade; this is of course impossible since _bi are as

yet unknown, and due to the transcendental nature of the trigonometric functions. To

avoid this problem, it is customary to expand the cosine function in a truncated series:

cosTi_b i _ 1 -- ½7iTj_i_b j . This means of course that the analysis will be limited

to moderate rotations. Hence, if we wish to develop a modal approximation without

introducing additional assumptions, the nonlinearities must be of a simple, algebraic type.

Consider next the order of the nonlinearities, say 7", where n is the order of

nonlinearity. In the modal expansion this becomes "fi'yJ"/k..._i_bj_k .... It is clear that

the number of coefficients generated by such expression is proportional to N n, where N

is the number of assumed modes. Hence, for a 12 mode approximation of an expression

containing sixth order nonlinearities, 2.9x106 coefficients will be generated, requiring

22 megabytes of storage on a computer! From this discussion, it is clear that a modal

approach must be based on expression containing simple, algebraic type of nonlinearities

only, and the order of the nonlinearities must be as low as possible.

It is clear that the Reissner's Principle based formulation described in chapter 2 is

ideally suited for a modal approximation since it involves nonlinearities only, of quadratic

order. The details of this modal reduction are given in the following sections.
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Section 3.2: Modal Approximation to The Total Lagrangian of The Structure.

When the structure is modeled using the idealizations described in chapter 2 the total

Lagrangian can be written as:

£ = /(_'V---t*-a *M*-'P-t *)_p_t- (FTe-IE_THF) dV (3.2.1)

V

where independent approximations can be made for the displacements, momenta, and

internal forces. It is convenient to distinguish between rigid and elastic velocities (2.5.21)

as:

L* = A_ + _ (3.2.2)

and correspondingly, the following momentum is chosen:

= M*AU r + _ (3.2.3)

Introducing these equations, the total Lagrangian becomes:

where the "rigid" Lagrangian is:

£ = £r + £e (3.2.4)

with

_'r = uT MVr 1 T_ _ - _u_, M___+__,r(_c-_) + vSa

M= f ATM*A dV

V

C_.= f ATM*vV__ dV

v

T •D= A p__,dV
V

and the "elastic" Lagrangian is:

£e= / (P_-V_ - 1*''*-'-_p__eiv'_)*'_- (FTe-2F_.TIIF_)

V

(3.2.5)

(3.2.6)

(3.2.7)

(3.2.8)

dV (3.2.9)

The rigid body motions are represented in terms of physical variables

R_T = [P1 P2 P,_ Qo Q1 Q2 Q._] ; /___T= [P1 P2 P._ Qo (_1 (_2 (_._] (3.2.10)

where the Pi are the components of the rigid body translation (2.5.7), and Qi the Euler

Parameters of the rigid body rotation (2.5.1). In contrast, the elastic displacements,
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momenta,andforcesareassumedto beadequatelyrepresentedby an expression in terms

of known mode shapes about a given steady reference configuration.

J j_,; = ui° + ui,& (3.2.11)

where u i° is the time independent, reference configuration of the elastic body, u iJ the

assumed mode shapes, and %b_ the generalized coordinates. A similar expansion is

selected for the elastic forces and momenta, respectively.

F,- F,°÷F,+; (3.2.12)

Pi p,0 ,j j* = + Pi Cp (3.2.13)

Section 3.3: Elastic Lagrangian for Beam Elements.

Introducing the modal expansion described in section 3.2 into the expressions for

matrices G and H (Appendix A.6) yields:

kt H 0 t kG=G°+G Cu ; H= +H Cu (3.3.1)

where

and

G O _-

- qO q_ qO _qO]

-+ +
_qO qO _qO '_0 .I

,, ,t 4J
H ° and H k are defined similarly. The elastic rotation matrix becomes

(3.3.2)

(3.3.3)

k k Tkl_bk_blT = T O + T ¢,_ + _ .,.,, .,.,, (3.3.4)

where

T ° = H°G oT ; Tek = HOG tT + HkG °r ; Tekl

The strains (2.4.16) become

= HkG tT (3.3.5)

k k _kl_tk_tl _klm_l_k_+.l _lm
e = e0 + e_,¢,, + e____WuWt_+ e__...._g',,VauW,,

(3.3.6)

where:

e° = TOT u'.._.O0;e..___ = rOeTu 't + Ti Tu'....°°;el_...._t = TekTu"; etlrn = T tlTu'__..m,m
(3.3.7)
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with

and

r,.,s']¢2_"=/"_" + t_x/; "A =/'-'?
/ ulkLu_O+t31j t. 3

TOT rq71=/q71
[q01

qO ] Ti T i qqkl_ qq_ qlk31
qqi22 q_3| ; = q2k3/

q°2 q._._J qal q32 q3_J

Similarly the curvature (2.4.16) become:

k k kl--k--I
t¢=-_°+- _ Cu+_ _Puv2tt

where

_o = 2G°qZ°; s:k= 2G°q_ _k + 2GkqZ°; _kl= 2Gkq_Z

the warping strains become:

k k
e4 = e ° + e4¢ u

Finally the fictitious strains are expanded as:

0 k k kl.kll
e9 = qTq--1 = e 9 + eO_ u + e 9 _putpu

where

k 2qOT kl qkT qle0 __ q0T. q0 _ 1; e0 = _ . q_k; e0 = .

The strain expressions (3.3.1) to (3.3.4) can be written in a generic form

k k kl--k--I klm--k--l--m
e = e° + e_2¢_ + e-- W__vu + e-- -W,,WuWu

(3.3.8)

(3.3.9)

(3.3.10)

(3.3.11)

(3.3.12)

(3.3.13)

(3.3.14)

(3.3.15)

We now turns to the expression of the elastic translation velocity (2.5.10)

_ ,k_Lk -- "*k_k _ kl_Lk_t_i -- .,kiTk.l
= V; O'q-_ Wu t_ IPu "4-_ WuWu t_ _)u_)u

klm _ k --I --m -- • *klm ; k --I --m
+ v__¢ WuWuW_ -_ v-e v2uwnWu

where

go rr_OT "_0T O v_k (T:T_k T r_k T _o'Or'_ 0 _e,k=.t e _ W__r ; = +1 e et ) w__.r;

_kl _-" 2 e"r_kT'vT"lTAW__r ;O ___e,kl

with

-- TOTuk

Tlruk; v__klm _klr C.-m r 0 ffe,klm Timru__k= _ =.t e .A W__r; --

o -(_o+_°)Yc° = (zo+ _o) o
-(_o+ @ (_o+ _o)

and

2k= u._ 0 -
,.,t o

(y0+_o)

(3.3.16)

(3.3.17)

(3.3.18)
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The elastic angularvelocities are found:

_o ,k-k _.%_ .k.k.l--..kl_k.l= + w---eY-'u + + w---e WuWn -t- w__ We _Pu (3.3.19)

where

= le W--r; = le W---r; We =_ Oqk

The velocity expressions can be combined as:

,'_kT I - *kl
=1 e W__r; we = 2Gkq__t

* = v*k_/_ k v*kl_hk_}_ i _r*kl_]jk_bl

_r,klm?/jk_bl _/_rn
v*klm_fik_hl _bm "_ ." e wu'ru'ru"q- " _ "r U "flu "r l_

(3.3.20)

(3.3.21)

The elastic Lagrangian now becomes:

_e

/,kl _l.k.Al l_kl _/_k_/_l rkl.hk.].l rkl ./.k./.1 ffkl _/_k_hl
+ ,...fu,ef'e,., + -p,_.,.p_u + ,--.pa,e;,,e,_ + ,-.ff_f_f + -pp','p"flr

[.klm.l,k.hl ./rn l_klm_/_k_bl T/_rn t.klm./,k.].l .i.m
"_- J" f uu _Ff Wu tFu 21- _puu "rp "flu "ru "_- Z"pdu _p v/u _Fu

rklmn./.k.hl .hm./,n i_klmn,bk_/I _/_m_bn pklmn./,k.].l ./.m./,n
"_- "t"f uuu tF f Wu _Fu tYn q" _puuu rp "flu "r u yu "_ _'pduu V_p _u _t"u 9_u

(3.3.22)

where

c_ ,o_,,,_ FO_,_ ,o_ • *_ -_F_(,2=_ _ - ; C_=_ Y_, ; C}= __FO);

= - _);Z_=p_, _ - ;_d_=P_, _ ;

I_FkrHFI kl _*kr_r*l kl ,k r • *1

ki 1 *krM*-t *1 ffklm *OT_r*klm rOreklm; [,klm ,Or_; ,klm-- ; -" _duuP__,Y_ -Z._ -_p_, & = ;

ffklm _rkr_lm l.klm _ *kr _r*lm rklm ,k " ,Ira
fuu ; --r_uu _"pdn= =_ _ ; =_ _ •

_kimn _. _rkr__lmn _klmn _*kT_r*lmn pklmn ,k T • ,Iron,_u,,_, ; -p,,,., = _ _-_ ; "_pd,,_= P__,V__
(3.3.23)

Section 3.4: Rigid Lagrangian for Beam Elements

The matrix M* defined in 2.5.19 can be partitioned as:

M, = [ mI rh*T]rh* J* (3.4.1)

The matrix M (3.2.6) can then be written as

3--6



where

and
,_ = m2 + T,_*T[

j = yc,_r + ,_ycr _ ,_y:2 r + T,.r,T r

The modal expansion of rh gives:

k k- kl--k--I
m m ° + m ¢,,= tm WuWu

where

_ = _ _ = _ Tkm *" m ki T:Im___*m 0 mu O-t-T:rn* ; m k mukJr e-- , -- ---

The modal expansion of J becomes:

k k .Tkl_bklbl .Tklm_/_k_/_l _/_m .Tklmn_/_k_bl _/_m_/_nj = jo + j ¢,, + v ._,,,.,, + _ ,.,, _.,,._,, + _ .,,_-,,,.,, _.,,

with

(3.4.3)

(3.4.4)

(3.4.5)

(3.4.6)

(3.4.7)

jo =_0rh0T + rh0,_0T _ mffOf(OT + TOj,TOT

jk _ ff(OrrnkT -t- skrrn OT nt- ?:nO f£ kT nt- rrnkS, OT -- mSO f( kT - m,f£k f£ OT

+r°+'r:_ +r: +'r:_
jki __OrhkIT + ,f(krhlT + Fnk _IT Jr _kl _OT _ mS_k f(IT (3.4.8)

+rOj'T:'_+T:'J'r0_"+T:J'T#"
_ k • ZmT T#ZJ,TTTjklm _f(kFnlmT + rhkl f(mT + Te j Te q_

jk,m =Tekl j,Tem,T

 o omo :
-TO "

C A = m iz + m w_r + T, m *

-- k k k "1, CAkt,/,k,/,t i,1 "k 1 (3.4.9)
= CA ° + CA,,¢u + C._C_._A'¢_,+ _ --,,u ,-,,-,-u + C..C._A',,¢,, ¢,,

C B = rh iz + Jw_.° + ff _'em" + TeJ* w___*

k k k "k (?Ffkl _bk_bl kl "k t= CB ° + CB,,¢,, + _C__¢,, + _.__=,,_,._,-_ + .C.._,,¢,,¢,,
(?]:lklm_bk I m pDklm.;.k.hl .i.m ('_,121klmn_bk_hl _/_m_/,, prlklmn.'hk.hl A.m.&n

where

CA o ~ OT 0 k - kT 0m _ ; CA,, _ mu_k + T:m* m__k= =m W____r ; = =

CA_ / =- kiT 0 k, ( ) (3.4.11)m w__r; C_.__A_,,= T l;t+T tl: m*

and

CB° = J _r ;°o CB_ = Jkw_,O ; C.._Bk = rhOu_k + 2OT_m__, + TOj,_t,

c,_:.-'_'° _'=,_'_ Zr:m" Z(r:' _) + +_,._J _,;_,, _ + __ + +T_ / m__* T°J''w_ _' _l-,.,_

= J w___.; + +Tte _ m* T_J*&._ l:l---.,,,_u _---_----_uu - + + _e J

CBklmn Tklmn 0 _Dkimn _,lmr* • *kl
uuuu "-- d _---r ; _uuu ---- le d

(3.4.12)
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Finally the vector D__T =

D_A=

and

where

DA.____T, D.__BBTJ becomes:

k k k k kl k I 1-)Akl _bk_bi l'),tlkim_bk_bl _]_m= DA ° + DA,,d/u + DA_tb_ + DA,,,.,¢,,¢,, + =..=pu-,-p .,-,, + -----put, ,'7, .,-_,-,-u
(3.4.13)

(3.4.14)

DA 0 ,.,.,o .o DA k ,..-,k .o DA_ T O-*k kl Teklp_O= _ =1_ =.t e_ ; ; _ e P__a ; D A t' t' = ;

DA_I ,.,4 *k DAklrn ,',-,tin *k= ,_ ; =___..p_,= 2e
(3.4.15)

and

D_.._0 = ,',0T0 ,0 k (_0T_ + _kT0"_ *0zt eP.P_a+ TOp_ °; DB, = e )a + T_ °

DB_ _o_o ,It=a.te_ +T°_k;

DB_1 = ffOT_l + f(k p__O+ T_Zp_O ; DB_ = ff°T_ + ._ , )P--a + leP-b

DBklm ¢_k_tm ,0 DRklm (ffOTlem ¢,Z_m_ *_ _lrn ,t

1-} Flklmn _ri,.._mn ,k

----p_.,n (3.4.16)

Section 3.5: Linearization of The Lagrangian

As a result of the modal expression described in the previous section, the total

Lagrangian can be written as:

c = UyMV - r_ __ _U r MU_.,. + U..T(_C -/9) + vTD__ + L_ (3.5.1)

where

M = M ° + M_¢ _ + Mt_¢_¢ _ + M_m¢_¢t¢ "" + Mt_ra"¢_¢_¢m¢ "

CO__"-- C___O .._ eke k -1- cklek¢ 1 q,- c_klmek¢l¢ mnt- cklmnek¢iem¢ n

D = D O + D*¢ _ + D*_¢_¢t + D_lmet¢_¢ '' + D_tmnek¢_¢m¢ n (3.5.2)

ki k I klm k I m klmn k I m n
z:_=z°+z:_¢_+z,¢ ¢ +z:_ ¢ ¢¢ +z:, ¢ ¢¢ ¢

The state vector ¢ = [¢_._, ¢_,,, ¢--1' C_p] has been used to simplify the notation. The quasi-

linearization procedure is used to expand the Lagrangian about a known configuration:

i / "PT "P[ • 1
£

+h.o.t

"£RR AR I

L Rn 0 A-_

£UR £UR £VV A-U }

(3.5.3)
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where the first derivatives of the Lagrangian are:

£R = Z(MU__r + D); /::R = Z(MU---r + D___);

£u = (MV, + C) - (MU, + D) (3.5.4)

£¢_ UTMiV, I T (V_f UT)D_D_i £_i= _ _ - _U r MiUr + u_Tc.c.c.c_+ - +

The second derivatives of the Lagrangian are:

LRR = W ; f-'f_R = IF" ; ff-gR = MzT ; f-'UR = MzT ; £vv = -M

£¢u = (MiVr + 6/) - (MiUr + D_) ; (3.5.5)

1T T T
L,/,¢ = U r MijV_,. - _U_ MijU r + Ur C__ij+ T

Increments in the rigid velocities can be related to increments in the rigid body parameters

as:

AV,. = Z TAR + zTA_ (3.5.6)

where

° !]
0 0 0 2_ 2_ -2_ 2_

0 0 0 2_ 2_ 2_ -2_

0 0 0 2_ -2_ 2_ 2_

o o o 2Q_ -2Qo -2Q3 2Q2
o o o 20_ 2Q_ -2Qo -2_
o o o 2Q1 -202 2_ -2Qo
o o o 2Qo 2Q1 2Q2 2Q3

(3.5.7)

with

° i],To

_1 _1 T_I 0 0 0 0

_2 _2 _2 0 0 0 0

_ _a _a 0 0 0 0
0 0 -2Q_ 2Qo 2Qa -2Q2

0 0 0 -2Q2 -2Qa 2Qo 2Q_

0 0 0 -2Qa 2Q2 -2Q_ 2Qo

0 0 0 2Qo 2Q1 2Q2 2Qa

Fo Q1

F_ = Qo
F2 -Q_
F._ Q2

Q2

Q_
Qo

-Q1

Qs PI

-Q2 /52

Q_ P3
Qo

(3.5.8)

(3.5.9)
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The following quantifies are now defined:

Z_z= z:_' + u,. M _vr - 2=" =" + Kr--C + V__T-___T Dk'

e -_ =,'- "--_- 2---_-'- _ --r-- + V_f - U D__k_m

(3.5.10)
and

_o = MOVr + c__O; .[9o = MOU__,.+ Do

_____k= MkVr + c___k; __k = MkU___r + D___k

_____kl= Mklv r + c___kl; D___kl= MklU _ + D___kt (3.5.11)

_____klm._ MklmVr + C___.klm; bklm = Mklmu___. r + D___klm

____klmn = Mklmnv r q-cklmn; bklmn = Mkimnu___ r q-Dklm n

The first derivative becomes:

f-.R = ZY__ ; £R = "_Y---;£U = X_. - Y__; £.¢i = £ei (3.5.12)

The second derivative becomes:

_-.RR = W; f_kR = l_r ; _'UR "- MzT ; f"UR = MzT ; £vu = -M

£¢R -- Y---iZT ; ff"_k "-- Yi 2T ; _U = Xi - Yi (3.5.13)

where

x d'°=_ + -_c%J,+

y b °=_ + b__%J'+
The following arrays were

W ..__

_V

____.klek¢l q_ _c_.kimek¢lem q_ ____.klmnek¢lemen

DD..klek¢ 1 + L)klmek¢l¢ m .__ D_klmnek¢lem¢ n

defined

"0

0 0

0 0 0

0 0 0 Ro

0 0 0 $1 R1

0 0 0 $2 T_ R2

o o o '3._ T2 T_
0 0 0 H1 Ho

0 0 0 H2 -H3

O0 0 Hz H2

o o o ,_v7 -2Y4"
0 0 0 2Y,_ aU7

0 0 0 2Y¢ -2Yg

o o o 2Y; 9.y¢

R3

H3 -II_
Ho H_

-H1 Ho
-2Y¢ -2Y_*
2Y_* -2Y5"

aV7 2Y4"

-2Y,_ aUr

(3.5.14)

(3.5.15)
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and

R0

R1

R2

R3

Ho
H1

//2
H3

_ __

=2

=2

• 0

[0

Q1
Qo
Q3

-Q2

o

o

-P_
Q2

-Qs

Qo
Q1

o

o Y
1

-P3
-P3

Q._
Q2

-Q1

Qo

i/:.,3

S1

; $2

$3

=2

T1
7'2 =2

T_

0

0

o P3
P3 o
P2 P_ o Y¢

(3.5.16)

3-1.

3-2.

3-3.

---4°
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Chapter 4

Comparisons of Modal and Finite Element Methods

Section 4.1 Introduction

The appropriate choice of modes is crucial to achieve accuracy in the modal analysis.

In general, natural vibration modes have been selected in modal analysis of rotor blades.

The relative merits of various sets of modes have been investigated, for instance, coupled

or uncoupled free vibration modes of a rotating or non-rotating blade [4-1,3]. It

is important to note that natural vibration modes characterize the linearized dynamic

behavior of the blade, i.e. the dynamic behavior of small, time dependent perturbations

about a given, steady equilibrium position of the blade. Even though it is natural to use

such modes in the analysis of nonlinear problem, it is well known that the accuracy and

efficiency of a modal method depends on the "quality" of the assumed modes, i.e. the

ability of the assumed modes to represent the actual response of the blade.

When natural vibration modes are used in conjunction with a displacement based

energy formulation that includes axial displacement as an independent variable, the

performance of the modal approximation is extremely poor. Consider the lateral deflection

of a blade in the nonlinear range, under a simple tip oscillatory load. If flapping modes

are used in the modal approximation, the lateral deflection is found to be much smaller

than that predicted by the full finite element model. This can be explained by the fact

that flapping modes contain no axial component (since they are linearized modes), hence

foreshortening of the blade is not allowed in the modal approximation and this results in

large axial loads which in turn, stiffen the blade considerably. The situation is somewhat

improved by adding axial vibration modes, but a large number of these modes is required

to obtained a good solution.

The reason for this behavior is twofold. First, in a displacement based formulation,

the stress-strain relationships are strongly enforced (i.e. they are satisfied on a point by

point basis), therefore, a very small error in the estimation of the axial strain (as should

be expected from a modal approximation) will result in very large axial forces, because

of the very large axial stiffness of the blade. In fact, the inextensibility assumption is

often made to avoid this problem, however, the formulation is then restricted to single

load path blades. This problem can be overcome when using the mixed formulation

described in Chapter 2. Indeed, in a mixed formulation, the stress-strain relationships are

only enforced in a weak sense (i.e. in an integral sense); hence, small errors in strain do

not necessarily result in large errors in the forces.

Second, the actual axial displacement of the blade is due to foreshortening (a

nonlinear kinematic phenomena), whereas axial vibration modes characterize true axial

vibrations (a purely linear vibratory phenomenon). In other words, we axe trying to

"synthesize" a nonlinear kinematic mode shape, with linear vibratory mode. Since these

two phenomena are not physically related, we should hardly expect to obtain good results

in predicting axial displacements. This discussion has focussed on axial displacements
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due to foreshortening however, the above arguments equally apply to any nonlinear

behavior of the blade. For instance, transverse loads applied to the blade create a torque

due to the blade's transverse deflections. This nonlinear kinematic coupling is very

important for helicopter blade response, as it can change its angle of attack.

This clearly indicates the need for selecting alternate mode shapes that contain

information about the nonlinear behavior of the structure. Several concepts have been

proposed to improve the quality of the modal bases when dealing with nonlinear problems.

The conceptually simplest method it to recalculate a new set of natural vibration modes

every once in a while as the deformations of the blade become significant [4--7]. In fact,

the natural vibration frequencies and associated mode shapes of a helicopter blade are

known to vary significantly around the azimuth [4-3]. Even though this approach might

give good results, it does so at a tremendous computational cost, since the modal basis

must be updated during the response calculation, and the modal reduction scheme must

be repeated at each update. Another approach is to include in the modal basis natural

vibration modes about various different equilibrium configurations of the structure. This

method is attractive since only a modest increase in computation cost is required to

evaluate the various equilibrium configurations. Furthermore, this method appears to

give accurate results, see for instance [4-7].

Finally, the concept of perturbation modes seems to hold promise for improving the

accuracy of modal methods. It was introduced by Thompson and Walker [4-4] as an

analytical tool for the study of the nonlinear behavior of beam structures, and later the

same concept was used by Noor et al [4-5,6] in the nonlinear static analysis of beam and

shell structures in conjunction with the finite element method. The very same concept

will be used here to study nonlinear dynamic problems.

Section 4.2 Perturbation Modes.

Static perturbation modes can be evaluated from a finite element model according to

the following procedure. The incremental form of the finite element equation is:

= Q- (4.2.1)

where u is the vector of nodal unknown that includes both nodal displacements and

forces, K the stiffness matrix linearized about a reference configuration uS_,Q the vector

of externally applied loads, and _.F the vector of equivalent nodal forces. Equilibrium is

achieved when Au = 0 , or

- 9_ = 0, (4.2.2)

which simply states that at equilibrium, the equivalent nodal forces are equal to the

applied loads. The equilibrium configurationu* is of course a function of the applied

load. Consider now an applied load of the form AQ_ (A is a scalar), the equilibrium
condition is:

= o. (4.2.3)
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SinceFi is a nonlinear function of the displacements, equation (4.2.3) can not be solved

easily, however, taking the first derivative of this relation with respect to A yields:

cgFiu0 )
j = Qi, (4.2.4)

where __ = Kij is the linearized stiffness matrix, andu_ 1) is the first perturbation mode

which is clearly nothing else but the solution of the linearized problem. The second and

higher order derivatives become:

Kijzt_.2) 02 -b"i (1) (1)
= OujOukUj u k ; (4.2.5)

K (3) - Oq2_/ (2) (1)

iju i = --;.¢Ou_kUj uk

03F/ (i) (I)(i)

uj u k u I ;
OujOukOul

Ki.u(4) 02Fi {. (3) (i) U(2)u(2)
J J = OujOuk_,'_uJ u_ +3 j k )

6 OaF/ ,,(2), (i), (1)
-- &j-_-uk&l-j _'k "t ;

K (,5) 02Fi (5u(4)u(1) 10u(Z)u(2)_
iyuj - OujOuk \ J k + j k ]

OaFi {lnu(3)u(1) (1) l,.u(2)u(2) (1)'_

OujOukOut _, v j k ut + o _ k ut )"

(4.2.6)

(4.2.7)

(4.2.8)

These relationships are recursive, and involve a single inversion of the linearized stiffness

matrix. They also involve higher order derivatives of the equivalent load vector Fi. This

task is relatively simple when dealing with the finite element formulation described in

Section 2, since the energy expressions are purely algebraic, quartic expressions. This

also explains why fourth and higher order derivatives vanish and are thus absent in (4.2.7)

and (4.2.8). In a perturbation theory approach, the solution would be written as:

1 .3 (3)
ui = fzi + Aul 1) + 2-_1A2ui(2) + _a u i + ...... , (4.2.9)

however, the convergence characteristics of this expansion are extremely poor. A much

better approach is that proposed by Noor et al. [4--5,6] where the perturbation modes are

simply added to the modal basis of a standard modal analysis as described in Chapter 3.

The above formulation is limited to static problems; however, it can be readily

extended to accommodate dynamic situations. Let Q be the inertia forces associated with

a natural vibration mode shape u_, i.e. Q = w_Mu_Twhere M is the mass matrix, and wi,

the associated natural frequency. The re,cursive relations (4.2.4) to (4.2.8) can be used to

obtain perturbations of these natural vibration mode shapes. Such modes will be termed
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here"dynamic perturbationmodes."In this case the stiffness matrix is the sum of the

structural stiffness matrix, and the centrifugal stiffness matrix.

Section 4.3 Numerical results and discussion.

The purpose of this chapter is to assess the accuracy of modal analysis methodologies.

This will be done by computing the dynamic response of structures obtained on one hand

from the full finite element procedure, which will be taken as a "reference" solution, and

on the other hand, from the modal analysis procedure, with various modal bases. The

computation proceeds with the following steps. First, the physical structure is discretized

into a number of beam elements and the corresponding finite element equations are

integrated in time using the finite element in time procedure to obtain the reference

solution. The second step is the selection of a modal basis consisting of a mixture

of the following types of modes: natural vibration mode shapes about the reference

configuration, natural vibration mode shapes about any other configuration, and static or

dynamic perturbation mode shapes. The third step consists of the modal reduction. It is

important to note that the full finite element model, the modal basis, and the modal

reduction are all based on the identical finite element diseretization of the physical

problem. In the last step, the modal equations are integrated in time to obtain the modal

response. In all cases, both full finite element and modal equations are integrated using

two noded elements in time (i.e. a linear approximation for the displacements within

each time step), and identical time step size are selected.

It is important to note that all the models discussed here are based on the exact same

equations, namely the Euler equations resulting from the minimization of the Lagrangian

expression. The only difference among the various solutions is the description of the

solution fields: in the full finite element model, the solution is represented by polynomial

expressions defined within each finite element, whereas in the modal analysis, the solution

is represented by the modal superposition. Hence, all the responses presented in this work

are based on the exact same equations, with different spatial discretization of the solution.

The first test case consists of a straight, cantilevered blade, with a thin-walled,

rectangular cross-section. The blade has a length of 3 m, a width of 0.15 m, and a

height of 0.02 m. The wall thickness is lmm, and the material is aluminum (Young's

Modulus 73 GPa, density 2700 kg/m"t). The overall geometry of the blade is depicted in

Figure 4.2. The blade does not rotate, and is subjected to a tip load of 250 N oscillating

with a period of 1 second. The blade is modelled with four cubic beam elements, for

a total of 96 displacement degrees of freedom. Forty time steps are used to model the

1 second period. Table 4.1 details the three different modal bases used for correlation.

Figure 4.3 compares the flapping deflections of the tip of the beam for the various modaJ

bases and the full finite element model. A good correlation is obtained for all modal

bases, even though very large transverse deflections occur (1.3 m compared to the 3m

length of the beam). Figure 4.4 shows the correlation for the axial displacement, i.e.

the foreshortening of the tip of the beam. Note that a single perturbation about the first

flap mode yields an excellent correlation, whereas adding the first 3 or 5 axial vibration

modes do not achieve this level of accuracy (bases 2 and 3, respectively).
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Table 4.1 Description of the Modal Bases for the 0° Nonrotating Blade

Basis 1. Basis 2. Basis 3.

Flap Modes 1 1 1

Flap Perturbations 1 0 0

Lead-Lag Modes 1 1 1

Axial Modes 0 3 5

In the second test case, the blade's cross section is tilted at a 45 ° angle with respect

to the loading axis. Table 4. 2 summarizes the various modal bases used here for the

modal analysis. Note that basis 4 involves modes which were taken about the deformed

configuration of the blade under the static load of 250 N at the tip. Figures 4.5 and 4.6

show the in-plane and out-of-plane deflections of the blade, which are all in reasonable

agreement with the reference solution. Figure 4.7 shows the tip twist of the blade, a

nonlinear kinematic phenomenon due to the offset of the tip load creating a torsion

moment arm. Basis 4, which contains the natural vibration modes about a predeformed

configuration of the blade performs well when the dynamic response of the blade is in

the same direction as that of the predeformation (the first half of the period), however

it performs very poorly when the dynamic response is in the opposite direction of the

predeformation (the second half of the period). This clearly shows that modes about

a predeformed configuration should be avoided when the dynamic response involves

complete reversals, as is the case for a helicopter blade. Basis 3 contains natural vibration

mode shapes only, and performs very poorly, missing the tip elastic twist by over a factor

of two, even though 5 torsion modes were used in an attempt to capture this kinematic

phenomenon. The reason for this poor correlation is that the observed twisting of the

blade is due to a nonlinear coupling effect, whereas the natural vibration mode shapes

characterize true torsion vibrations. These two phenomena are not physically related,

and this explains the poor correlation. Finally, Figure 4.8 depicts the amplitude of the

torsional warping deformation. Only basis 1 provides a good correlation for this quantity

that is directly related to the torsional loading in the blade. Clearly the perturbation

modes of basis 1 outperform all other bases, even though it only includes a total of 5

modes. Note that a static perturbation mode was included in this basis to provide the

proper nonlinear coupling between transverse loading and twisting.
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Table 4.2 Description of the Modal Bases for the 45 ° Nonrotating Blade

Basis 1. Basis 2. Basis 3. Basis 4.
itl

Flap Modes 1 1 1 1

Flap Perturbations 1 1 0 1

Lead-Lag Modes 1 1 1 1

Axial Modes 0 0 5 0

Torsion Modes 0 5 5 0

Static Modes 1 0 0 0

Static Perturbations 1 0 0 0

In the third test case, the 45 ° blade is now spinning at an angular velocity of 6.28

rad/sec, and is subjected to a 350 N oscillating tip load. Table 4.3 summarizes the various

modal bases used in this case. Figures 4.9 and 4.10 show the in-plane and out-of-plane

deflections, which are all in good agreement with the reference solution. Figures 4.11

and 4.12 show the tip twist and torsional warping amplitudes. Once again, basis 1, which

involves perturbation modes, clearly outperforms the other bases, even though it includes

5 modes only.

Table 4.3 Description of the Modal bases for the 45 ° Rotating Blade

Basis 1. Basis 2. Basis 3.

Flap Modes 1 1 1

Flap Perturbations 1 1 0

Lead-Lag Modes 1 1 1

Axial Modes 0 0 5

Torsion Modes 0 5 5

Static Modes 1 0 0

Static Perturbations 1 0 0

The last test case involves an actual helicopter blade: Sikorsky Aircraft's Blackhawk

blade. This 27 ft long blade is modelled with 16 cubic elements, for a total of 336

degrees of freedom. Forty time steps are used to model a single period of 0.23 seconds.

The aerodynamic loading is approximated by a concentrated lift (1000 lb) and drag
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(250 Ib) forcesappliedat 92% span. Figures 4.13 and 4.14 show the in-plane and out-

of-plane deflections of the blade, which are in excellent agreement with the reference

solution. Figure 4.15 shows the tip twist (i.e., the tip angle of attack) of the blade, and

large discrepancies are observed between the reference solution and the various modal

responses. Several bases are examined, but produce only marginal improvement. The

reason for this discrepancy is probably the presence of nonlinear coupling between the

twisting of the blade and rotational dynamic effects. Such nonlinear couplings are non

properly represented by natural vibration modes, nor by perturbation modes. Indeed,

when calculating the perturbation modes, gyroscopic terms are ignored.

It is important to note that all the test cases examined in this effort involve a prescribed

loading. In actual problems, the loading is of an aerodynamic origin, and hence dependant

on the response of the blade, most noticeably on the angle of attack. Were the above

modal analysis used in an actual coupled problem (aerodynamics coupled with structural

dynamics), the discrepancy observed in the angle of attack (Figure 4.15) would generate

different loading conditions, which in turn would further change the blade's response.

This would generate different responses for flapping, lead-lag, and twisting.

Table 4.4 Description of the Modal bases for the Blackhawk Blade

Basis I. Basis 2. Basis 3.

Flap Modes 3 3 3

Flap Perturbations 0 0 1

Lead-Lag Modes 2 2 2

Axial Modes 0 1 1

Torsion Modes 5 5 5

Static Modes 1 0 0

Static Perturbations 1 0 0

Finally, it is interesting to compare the computational times for the various ap-

proaches. Table 4.5 summarizes the CPU times for the full finite element analysis and

the various modal approaches, normalized by the CPU time for the full finite element

analysis. It is interesting to note that even though the 5 mode modal analysis only re-

quires a small fraction of the full finite element CPU time, the cost of the modal analysis

drastically increases with the number of modes. In fact, the 12 mode analysis is more

expensive than the full finite element model. As the complexity of the full finite element

model increases, its cost will increase as well, however, Table 4.5 clearly indicates that

the costs of dealing with modal or full finite element models become comparable as the

number of modes increases. Since the accuracy of the modal analysis is questionable even

when using an increasing number of modes, the full finite element model is preferable.
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Table 4.5 Normalized CPU times for the 45 ° rotating blade

Analysis Method Normalized CPU "l'ime

Full FEM (96 DOFs)

Basis 1. (5 Modes)

Basis 2. (8 Modes)

Basis 3. (12 Modes)

1.00

0.090

0.261

1.22
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Chapter 5

Kinematic Constraints between Elastic Bodies.

Section 5.1: Introduction

This chapter deals with the formulation of the kinematic constraints between the

elastic bodies of a multibody system.

True position 1 Fictitious position

Body 2
• " .,'•

•- •.-" Body 1

.. o.

r

11

To define the multibody system, the initial position and orientation of the various

elastic bodies must be given, i.e. /5(i)(t = 0) the inertial position of the material point

O (2.5.7), and T_(i)(t = 0) the inertial orientation of the body (2.5.1) are specified. It is
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assumedthatT°(i)(t = 0) is an identity matrix. The notation (.)(i) is used to identify the

body i whenever the distinction is necessary.

Section 5.2: Displacement constraint hinge

A hinge corresponds to a set of kinematic constraints on the relative displacements

and rotations of two distinct bodies, and involves the degrees of freedom of two nodes,

one in each body. A set of orientation vectors _ is also associated with each hinge to

allow for the definition of the relative rotation constraints.

Consider first the kinematic constraint corresponding to the continuity of displace-

ments across the "hinge" which can be written as:

where/_i) is the position of the hinge calculated in body i. In this section we examine

the formulation on the problem when constraint 5.2.1 is enforced. However, it is also

possible to enforce the time derivative of this constraint, this approach will be discussed

in section 5.4. When the constraint conditions are adequately formulated, the Lagrange

multipliers become the unknown forces transmitted at the "hinge". Equation (5.2.1) can

be expanded as:

where /3 is the position of the reference frame (see (2.5.3), f'0n the position of the

hinge in the undeformed body, and fin the elastic displacement of the hinge. The vector

relationship (5.2.2) can be expanded in component form as:

p(1) [ z(1) .,_ u0 )

?
, t U3h

+,t_ =0
+ "3h

(5.2.3)

The reference triad of each elastic body is related to the inertial triad through (2.5.2),
hence the constraint condition becomes:

I I li!ii[_'£'_J{ p_l) P!_I q'- Tr(1)Tr0(1),_1_ "_" tl_ _Tr(2)Tr0(2) "_-
h + }=0

z0h + 3h + 3h
(5.2.4)

or, in component terms:

T(a)TO(1)u(1) p(2) _ T(2)TO(2)u(2)p_.(1) .jr r r --h ---- r r --h -- 0 (5.2.5)
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Consider now the kinematic constraints on the relative rotations of the two bodies.

At time t = 0, the orientation of the hinge is given as:

I d =
(5.2.6)

This orientation triad can be related to the base vectors in each body using (2.5.2) and

(2.2.7):

(5.2.7)

At time t, the two bodies have now rotated with respect to each other: d! '_) becomes

_('_), however, _(1) is attached to body 1, and d-_(2) is attached to body 2, hence:

(5.2.8)

(5.2.9)

With the help of (2.2.14) and (2.5.2), we find:

Let d! c'), q_), Q_(_), Q!_), and r! c') be the Euler Parameters associated with the

rotation matrices t__), T_('_), T°(_), Tr(_'), and R (c') respectively. The relative rotation

rule (A36--37) yields:

_,o,:.(Q,o_)a(oo,o,).(,,o_)__,o,(5.2.10)

The relative rotation at the hinge is now:

I R21IrsI
d-,3<1)• d_ (2) ,_(2)

(5.2.11)

and the relative rotation rule (A38) now yields the Euler parameters associated with S

as:

si = _r(1)T sir(2)_ (5.2.12)
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where

S 1 -_

S 2 --

S 3 =

0 1 0 0

-1 0 0 0

0 0 0 -1

0 0 1 0

0 0 I 0

0 0 0 1

-I 0 0 0

0 -I 0 0

0 0 0 1

0 0 -I 0

0 1 0 0

-I 0 0 0

The appropriate relative rotation can be constrained by

Parameter to vanish, i.e.

(5.2.13)

(5.2.14)

(5.2.15)

enforcing the corresponding Euler

si = 0 (5.2.16)

The kinematic constraints (5.2.5) or (5.2.16) can be enforced by means of the

Lagrange multiplier technique. Since a Hellinger-Reissner formulation is used for the

other components of the Lagrangian, it is convenient to use a similar formulation for

the constraints, namely:

_fT ( q_ T(1) T,o(1)u(I) p(2) T{2)TO(2) u(2)'_H
kP___(I} r r --h ---- -- r r --h ,]

(5.2.17)

+ _ i2"-"d(fT.f +

S = giS I+ 92S 2 + gas 3 =

where

fi and gi are the Lagrange multipliers, and

I 0 gl g2 g3

--gl 0 --g3 g2

--g2 ga 0 -gl

-ga -g2 gl 0

is a large number.

(5.2,18)

Section 5.3: Modal approximation of the kinematic constraint

at a displacement hinge.

In this section the kinematic constraint at a hinge (5.2.17) is expanded using the

modal approximation described in section 3.2. The elastic displacement of the hinge
(5.2.5) is expanded as:

(5.3.1)

and

(5.3.2)
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where

and finally:

where

_v*o<,_)= T_'%o<_); v_.k(_)= T_'%_k(_)

(5.3.3)

(5.3.4)

(5.3.5)

Similarly, the array r__('_)(5.2.10) is expanded as:

r_(_)= r__o<_) + r_k(_)_ ('_>

where:

r__0('_) = A (Q(_))A (QO(,_)) B (d (_)) q_O(,_);

r__k(a) = A (Q(_))A (QO(,_)) B (d ('_)) q_k(c,).

(5.3.6)

(5.3.7)

With the help of (5.2.1) to (5.2.7) the constraint condition (5.2.17) becomes:

-- -- 20<
(5.3.8)

The constraint expression is a nonlinear funtions of the rigid body parameters and

generalized elastic coordinates of the two bodies. The quasilinearization procedure can

be used to expand this expression about a known configuration to find:

/'/R(0

Hum

H--_+LA__R(1) r A_(ul)T AR(2} T A_2) T AfT J{ H RCO

Hu(.,)

%
HR(,)R(O AR i)

I H,,(,_a<,) o A_ 1i)
+ -_ HR('_)R(O HR(,)u(O HR('OR('_) AR '2)

H.(,)R(O H,(,),,o) H.(',)R(,) 0 A¢I _)

HIR(O HIuo) HIm'o HI,_('o HIS Aj

} + h.o.t.

(5.3.9)

The derivative with res

Il mo> = sign(a)

)ect to _R(_) is:

fl

f,b! °) f_b(.a) f b(.a) + r(a)TSr(_)-- I +-_ z +Ja o '-0 -
<o> <a) (a> <(_)T (fl>

fib0 -f2ba +lab2 +r_l Sr

¢.b< _') _ Fob<'_> [,b!"> + r(_")Tsr<_>
Jl 3 T J2 0 -- J'$ i --_ --

¢, (4) 4- f,b! =) f_b(_a) r(a)Tsr(B)-J, bz --.,,. i +.,., , + '-..,_ -

(5.3.10)

\
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wherethe following notation is used:
_ig,_(1) = +1; _ig,q2) = -1

r_r.{'_) denotes the derivative of r (a) with respect to Q_a),
i

b(,,)

bl-)

i

/ Q<<_)

= 1; (#) = 1 when (,_) =
md

Q!.) -QQ_

The derivative with respect to ¢(a) is:

___,<o>=_(_1 (s_-"'(°>+__,<o>_s__<_>)

(5.3.11)

(5.3.12)

(5.3.13)

(5.3.14)

The derivative with respect to f is:

HI =

where

p(1) .- ,(1) p(2) _ v_(2) _ fx/_-f vl -- 1

• ,<1) p(2) _ v_(2)_ f._lc,
-4- v 3 -- 3

r(1)TSXr(2) -- glla

_(1)Ts27(2) -- g21o_

_(_)Ts._7_(2)_ _,_t_

The derivative with respect to R (`'), R._(a) is:

Hsi(.)si<")= sign(a)

0

00

000

000 }_ _')

s!o>
0 0 0 S}_)

0 0 0 S!0 0 0 _)

3

vtO) : ) v (<_)

:_ ->>/is._2 -- 3
(,_)

' ) "
s4<') o )

'_ v (') 0 S._
-- 1

/° v!O,)v (<')

i_o> ,,!o>,,Io>o i/s._i
i..t_

R(,_)

(5.3.15)

(5.3.16)

(5.3.17)
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The derivativewith respectto ¢_('_),_R('_)is:

0
0
0

H T = sign(a) flbil (a) + f2b; (a) + f3b; (=) -t- _(a)TSr(B)
ui(°)R(") --7(a) --i(a} --l(a) i(a)T,., IZ%

¢lb.0 -- ¢203 -I- ¢.30.2 -I- r__[ Dr, ,

f:b;<°>+f_b_<°>-f.,bf°>+:_('>_s:<_>
_f:b;<_>+s_b_<o>+s3b;<o)+_<°>_s:<_>

where

b_(")
bil(")

b_(")

b_(")

_2

= -_._ _Q_.) v-i(")

The derivative with respect to f,__R (a) is:

(5.3.18)

(5.3.19)

I 0 0 _) b(a) b(a) -b (a)

b!_) _°b(_) b! _) b!_)

0 1 0 b!_) b(_) b<_) bt.)

H/R(o ) sign(el) 0 0 1 2 --1 r(a)TOSlr(#)= r(a)TSlr(_) r(a)TSlr(B) r(a)TSlr(_)

o°o°o°_o>_s_7<_>7to>:_s_7<_>7_°>_s_7<_>_!°>_s_7<_>

(5.3.20)

The derivative with respect to f, ¢_(_') is:

HI_,(o> = sign(a)

v_i(°)

v_i@ ')
,i(_)

v3

r__(<_)Ts:r_(n)

r__(,_)Ts2r_(n)

r_.i(a}rs3r_.(_)

(5.3.21)

HR('ORO) =

The derivative with respect to R(2),R (1) is:

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 _-or(1)T_4)(2)r(1)Tcr(2)_ r'(1)Tcr(2),J

r(l>T St(2) 711)TS'r-_2) ;:I')TS_2)

o o o _7:>_s71,>71'>_sTI_>:_'>_sTI'>0 0 0 r

-1 63 r:2 _ r--,i

0

0

0

:l:)_s,!_>
,!:>,:7t,>
:d

(5.3.22)
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The derivative with respect to _,,,,,Ji(2),_R(1) is:

_,,,,,,,,,,,,: Lo o o ,'<_>_s,_1>,'<_>_s,?,,(_>_s__il>

The derivative with respect to R (_), _,_(1) is:

0

0

0

ri(1}T Sr (2)

The derivative with respect to _(2)_(1) is:

H_(2)_,(,)= r_J(1)Tsr_.i(2)

ri(2)TSr (I)J (5.3.23)

(5.3.24)

(5.3.25)

Finally, the derivative with respect to f__,f is:

1 I
HI/= ---- 0]I (5.3.26)

Section 5.4: Velocity constraint hinge

The second constraint is the continuity of velocities across the "hinge" which can

be written as:
=.<1> =.<2>

R h = R h (5.4.1)

where /_i i) is the velocity of the hinge calculated in body i. When the constraint

conditions are adequately formulated, the Lagrange multipliers become the unknown

impulses transmitted at the "hinges". Equation (5.4.1) can be expanded as:

(t_il)-t-r_) + _i1')- (/::_i2)--I-r--'_Ol'-I.-tt-'(h2)) --0 (5.4.2)

The vector relationship (5.4.2) can be expanded in component form as:

[._ .t_ ./_j P3(1)P_I) "l- [_;1, _-'(21) /_1} J y_lh)z!£) ++_,I_._,,,+ [_'> _x) _1)j11,..,[,.2''_'>

t i i i i-L_ _ _Jd_,-l_? _? _?j I_+_ t ¢'J
(_..4.3)
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The referencetriadof eachelasticbodyis relatedto the inertial triad through(2.5.2),
hencethe constraintcondition becomes:

p_l) _ p_2)

p_l) _ p_2)

t,?- P?
U (1) Z( 1) U( 1) U il )

X{I)q-utl)IiI Tr(1) Tr0(1) " _)1_-t- " tl_ Tr(X)Tr°(1)uii)
q_ T r(1)Tr°( 1)

v {2) ut2.) - u<2>l_=0

- +z!_>+=.,_ +_._h
3h (5.4.4)

or, in component terms:

" ,_(1),_0(1) il)

P_il} q- (Tr( 1' TY{I' -1- Tr{ 1) Tr0{ 1)) u_l) -}- .t r -tr tt h

(5.4.5)

The kinematic constraints (5.4.4) or (5.4.5) can be enforced by means of the Lagrange

multiplier technique. Since a Hellinger-Reissner formulation is used for the other

components of the Lagrangian, it is convenient to use a similar formulation for the

constraints, namely:

+p____i_>+ \_,%?o> + : r )-h +frH

T<_>,T_<_>:_: <:>__,?>TrO<%i_>)
_ +_..2) _ _,._ 2)TO(_) + )--h (5.4.6)

_(+_.+)=o2a

Section 5.5: Modal Approximation of the kinematic constraint at a velocity hinge.

In this section the kinematic constraint at a hinge (5.4.6) is expanded using the modal

approximation described in section 3.2. The elastic displacement of the hinge (5.4.5) is

expanded as:

u___'_) = u_°('_)+ u__h _.,,

= u h _Pu

(5.5.1)
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and

where

and finally:

_-i°>=r,°+>¢>--v-1+>+_-1_

-Jr --h

v_i°>:rt<o>¢>:___'+>,'(o>_

v__<o>:z?<o>___+>;v__<o>=T,°<o>___<o>
_v_+>r/<o>_+>;__<o>_o<o>,<o>= -- .tr u_h

(5.5.2)

(5.5.3)

where

go>=r:O>v_iO>=,__o<o>+v_:<o>:yo>
v_(.) ,.,(_) (_,) .k(,_). k(,_)=It _v2 =v_ O(a)+v2 _u

v_._(_> _<_) (o> ,k(_).k'(,,)= Iv V__3 = V__3 lpu

v__a(.) _io,) o(,,) ._(_,) _io,) k(o,)--.tr V_1 ; V__1 =.tr _1

,-,,(._) k(,_)

_- Ir V__I

(5.5.4)

(5.5.5)

With the help of (5.5.1) to (5.5.5) the constraint condition (5.4.6) becomes:

(_:.:)H -- L T (P i1> - P i2) =}-_(1) _ _v_(2) =}_v_(i> _ v__(2) _}__v_(1) _ v_._(2)) _

(5.5.6)

The constraint expression is a nonlinear funtions of the rigid body parameters and

generalized elastic coordinates of the two bodies. The quasilinearization procedure can

be used to expand this expression about a known configuration to find:

where fiT =

H,l,(l)4,(l)

H_I,(04,(0 0

H_,(',)+o> H+('..)_,o)

H_<_)<I,_,) H¢c+)$o)

Hf,l,o ) Hf,(,)

RT RTJand 02T=

H_u ('o $(2)

HI¢CO

I'f@(t)

H__(t)

H,I,(_)

H___.qi,('_)

HI.

n+ :)

A_ 2) } + h.o.t.

(5.5.7)
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The derivative with respect to R {') is:

I-IR_,,)= sign(s}

0

0

0

f e1'_) + _ elC,) + _ e(_)11 .122 J33

• e (,,) . e(_,} ± re (_')
J1 0 --J2 3 T J,$ 2

• e(_) - e(_,) r_e (_,)
11 3 I /2 0 --ja 1

,- e(_) + * e(_) + * e(,_)--Jl 2 ./2 1 J3 0

where,

and

finally

c ('_)

Q(";

= 2 Ot°>

)

Qi°>
= 2 Q_)

Q(o)
3.

_oio>

"(") Q<")[-&

Q<_') ,')(") [

,-)(¢0
- _a v__¢')

Q(-)
2.

,q(o)
--_.a

_<o>= b?o>+ _<o>+ d?o>

The derivative with respect to R__i_') is:

Q(") v_,, }2.
,-)(_,)

--_.1

for i = O, 3

I IRi. ) = sign(a)

fl

A
h

S_h{o)+ hh_o)+ S_h<°>
flh_ a>- f2h_ a) + fah 'la}

-flh_ a) + f2h{ _'} + Aho >

where

h_">

h_ a>

h_ _>

h._">
I0oi, = 2 Qto>

)

io> 7#>
- __2<o>_-i°>

>

(5.5.8)

(5.5.9)

(5.5.1o)

(5.5.11)

(5.5.12)

(5.5.13)

(5.5.14)
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The following notation is used:

sign(l) = +1; sign(2) = -1 (5.5.15)

(fl) = 2when(a) = 1; (/3) = lwhen(a) = 2 (5.5.16)

The derivative with respect to ¢(_') is:

Hu,(o) = sign(a)fT { ,i(,_) "-- _ _v-1 +v; '(">)

The derivative with respect to ¢(_'_} is:

(5.5.17)

(5.5.18)

The derivative with respect to f is:

/_/f ----lib<l> --__p<2> q-v_<l > _ v_<1 > Jr v_<I> - v__<I> q-v__<I>

The derivative with respect to R(_'),R ('_) is:

0

0 0

0 0 0
• (,_)

HR_o)Rt_) =szgn(a) 0 0 0 R9, (5.5.20)

0 0 0 S_ a_ R (_)

000 +,
o o o s,_°> T_°__!°>R<:>

where

R (_) t v_(_> v2(_) v'_(_) I ,2(_) .3(_)
tRIo>I /I ..o> 5<°> 5<o>1d<°> °'_ _'_

v 2 --u --v --V 3 --V3
I Rt_)I = 2_1 v l(a) v2t a) _._<o>/+_I(°> _<o>'3<o>i_
IR?o>/ /I- _<o>5<°>-&l -&> v_<°> u<o> s_

--v 3 v 3

_(a) I1 {i 0 -- zV3(a) v2"(a) 'z ;,0 --v'_(a) v2(a) 133

fl
-- - 2 0 -v z + 0 -v l(a) ]'2

T<_>=2 v'_<°l o v!<">+ d_°) v_o) } +,_
r!°>3 _<°>__<°> . q<°>"q<°>°o J +._

(5.5.21)
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where

The derivative with respect to _R_'_),R('_); is:

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

_R,o,R,o,=_'_("/0 0 0 V_°_ V_ V_°_ V?>
U!(_) IV(_) IV(_)

ooo: + :°':I::o°°°oo +,. _°, _°,

:! (i_ Vl Vl
v2(a) v3(a) fl

_!, _v? :,o,;+, __
_°>=_ q_o>-o, _ :_
v?> I-v__°_v_<°_ o /._

Vl Vl J1

IV(_)4o' =_;:, o v:,O,:2
vl (') 0 g

,/,i('_) r_(,_) is:The derivative with respect to _,, ,

H T • = sign(a)
u'(o)R(a)

where

(5.5.22)

(5.5.23)

0

0

0

:_(_,:o,+4°,)+,_(_;,o,+4o,)+,_(,;,o,+4o,)
¢1 {bi('_) + d i(_')_ _ /b i(c') + d i(_)_ + h {b i(_) + d i(°')_J \ o o )-J2k._ ._ / J. k 2 2 /
:1 {bi(a) + d i(a)_ + ./:2/bi(':') + d i(°')'_ f3 {bi(°') + d i(')'_
., k3 .s ) _:ko o )-J._,l 1 ]

-:,(¢>+4o>)+:,(_,:o,+4o,)+:_(_;,o,+4o>)j
(5.5.24)

=2

Q(") Q(_>

_Io>_QiO>

o!::,
--'_.2

Q(,,) Qg,,)3.

_qio>Qio>

c)(_) v2
--_*¢1

Q(o)

Q(") i(o)
2. E1

O_O>

(5.5.25)

bio<_>
b_<a>

b_<°>
b_<_>

d_<_>

d_<_>

d_<_>

d._<_>

=2
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ii,,) R(")The derivative with respect to _p,, ,_ is:

H T -- sign(a)ui(,_)R(_.)

where
i i(,_)

cio(o,)

cil(o,)

c3

0

0

0
fli(_,)_ _ i(.)_, i(,_)

cl 1- J2c_ I- Jac 3

JlC o -- J2C3 -t- JaC 2

JlC3. -'t- J2Co. -- j3c 1
r ,(_) - ,(,_), _ i(,,)

--J'lC 2 + J'2c 1 -'t- f3c 0

t Q(.) f)(,_) Q('_) I

Q!o,:2,o,& .
-'_a v_,l(_)

= 2 f)(.) Q(o) _o(_ )"_3 '_1

_Q_o,Q!o,¢oo,

(5.5.26)

(5.5.27)

H T . _ H T.
ui(_) R(o) ui(o) R(¢,)

The derivative with respect to f,_R (`_) is:
m

0 0 0 e('_) e('_) e (') e (') ]

0

OOOooo:I:I :i::
The derivative with respect to f, R i'_) is:

HfR{=) = sign(a)

1 0 0 h (a) h_a) h (a) h (a)

0 1 0 h t'_) -h (") h Is) -_(_)

o o _ _!o,d, -;_o,'o_!,
The derivative with respect to L, ¢_'(") is:

1,i(a) + v_,i(oO

Hlu,¢o) = sign(a) v + v

_*'(o)_*'(.)v +v

¢ ,ii a)The derivative with respect to _, _p_, is:
m

Hlu,io) = sign(a) v .i(,_)
a.q_,)

v 3

(5.5.28)

(5.5.29)

(5.5.30)

(5.5.31)

(5.5.32)
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Finally, the derivative with respect to f, f is:

1 I
Hff -- ---

o_

0,I (5.5.33)

Section 5.6: Finite Element in Time Discretization of a Single Elastic Body.

The finite element in time procedure will be used to derive the governing equations

of the problem. In the modal formulation, the time varying unknowns of the problem

are the dispacement variables/4, the force variables _, the momenta variables P__,and A.

The displacement variables are interpolated as follows:

Nu

k=l

(5.6.1)

where g_ are the interpolation functions, and/__.__kthe nodal displacements. If ti and tf

are the initial and final times of the period under investigation, the nondimensional time

7- is given as:

2( ti-tf)T=S/t 7

where At = tf -- ti. The shape function will be chosen as follows:

1

g_ = 5(Po - P1)

1

g_ = 5(Po + Pl)

gk = P -l- Pk-3
2k - 3

= Sk-2 k = 3, 4, ...N_,

(5.6.2)

(5.6.3)

where the Pi are the Legendre Polynomials, and the Si their integrals. In view of the

properties of Legendre polynomials, these interpolation functions are such that:

g_(-1) = 1.0; g_(-1) = 0.0; g_(-1) = 0.0, k = 3,...Nu
(5.6.4)

k
gl(+l) =0.0; g_(+l) = 1.0; gt,(+l)=0.0, k= 3,...N,,

which means that:

U(ti) = _l,and Ll(tf ) = U--2 (5.6.5)

The time derivative of the displacement generalized coordinates are now:

N_

k=l

(5.6.6)
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where

gl= 1
2

1 (5.6.7)

k = 3, 4,...NI,

The force and momentum variables are interpolated with the help of the Legendre

polynomials as well:

N!

k=l

(5.6.8)

and

where

and

k=l

gJ= Pk-1 k= 1,2,...xl

(5.6.9)

(5.6.10)

(5.6.11)

These various interpolation functions are conveniently written in matrix form, for

instance (5.6.1) can be written as:

u_(t)= B._; u__(t)= B._;
Z(t) = BIP; "r'(,)=Bp/'

= "-', _N_ ]

where

(5.6.12)

(5.6.13)

The complete Lagrangian for a single elastic body was derived in chapter 3, equation

(3.5.3), introducing the interpolation functions we find:

c=z+taa_ aZ

+ £_7 0

£ r,r,

:,_" }+ h.o._

(5.6.14)
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where

and

t!

ti

t!

tl

f T T Bv LuvBu) dt;_-uu = (B_ £uuB,, + B,, £uvB,. + T T

t!

T

£u7 = f Bn £uTB/dt,

4i

41

t,

t! 41

,..-f.r......;,..-le....,.
4i ti

(5.6.15)

(5.6.16)

In the case of mutually interacting bodies, kinematic constraints such as (5.2.2)

will couple the behavior of the various bodies. However, these constraints are purely

kinematic, i.e. they do not involve forces and momenta, hence, forces and momenta are

independent variables within each body. The stationarity condition with respect to these

variables yields:

= _ £77£uTz__

= _ £vr,£upAH__

Introducing these results into (5.6.14) yields a reduced Lagrangian expression:

where

c = 2 + :x__r_+ ½a__rkuuA__+ h.o.t

= - - £uv£pp£up

and

(5.6.17)

(5.6.18)

(5.6.19)

(5.6.20)

5 - 17



Section 5.7: Finite Element in Time Discretization of a Hinge Constraint.

Consider a single hinge joining two elastic bodies. The corresponding kinematic

constraint is in the form of (5.2.1). The Finite Element in Time discretization of

the displacement variables was given in section 5.6, and the Lagrange multipliers are

interpolated as:

_ = 9.(,)#_
k=l

(5.7.1)

where

g_(r) = Pk-1 k = 1,...N, (5.7.2)

and the corresponding interpolation matrix isB..

With the help of these interpolation functions, the constraint condition (5.2.9) be-

comes:

H = _ + L_Z_<_)TAU(2)T A_ZJ{ (2)

where

and

+ 7-//X(2)U('0 7-QU(_)/_

7-/t=u

A/_(1T--
Aa-_ }
zx__

+ h.o.t.

t! tI

Bu 7-[u(,}dt; H__.__, T= = B u 7"[_.Edt

(5.7.3)

ti ti

t!

^ / T7[u(ouo) = Bu 7-[u(ouo>Bt, dt; 7-Iu(%,
J
t,

tI

_.. / r= B u _uuBudt

t,

(5.7.4)

tl

= B_ Hu(,>uB_dt;

ti

The Lagrange multipliers are independent variables for each hinge.

condition with respect to these variables yields:

(5.7.5)

The stationarity

A/)--- "-1^ 7S(_17S(_(,) AZ_(_) "-1^ ^_ -Huu H.__Z_- . _ - 7-/m, 7_uT(,>uAH(2) (5.7.6)

Introducing these results into (5.7.3) yields a reduced constraint expression:

- I..,., IH =H + L_Z_<_)r_O(2)r]{a--_ I

HU(,)U(,) A_--_'2)It
+ h.o.t

(5.7.7)
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where

and

= -- ^ ^ _172/
Hu(i ) (7"[//(i) 7"/U(1) tfl'f_#, _)

^ ^ -1 ^T
"//,,,//0 ) = (7"[//,,,//,,, -- 7"//./,,) t_7"_t.t. "J_//0 ,.)

(5.7.8)

(5.7.9)

Section 5.8: Governing Equations of Multibody Systems.

Consider now a problem involving Nb elastic bodies interacting through Nh hinges.

Hamilton's Principle writes:

_SL +6W+I_{PT[u__(ti)-Ui] -P_[U_U_(tI)-UI]} =O (5.8.1)

where U is the total Lagrangian of the system given by:

Nb Nh

k = E £.(i) + E H(°') (5.8.2)
i=1 a=l

61A/ is the virtual work done by the applied loads; P...2/and P j- are the initial and final

momenta vectors, respectively; U__A and U j- the initial and final--Values of the displacement

vector U_(t); and finally ti and t I the initial and final times of the period under

consideration. The unknowns of the problem are the displacements in each of the Nb

elastic bodies, i.e.

uT(t) = [O(1)T(t),l_{2>T(t),...O(_b)T(t)] (5.8.3)

With the help of the finite element in time discretization described in the previous sections,

the unknown nodal values are:

_lo:,o:,...,o:.,j (5.8.4)

where

o:=
The variations of (5.8.1) with respect to the unknown initial and final momenta yields:

0__:= 0__2, ;0__._= Of (5.8.6)

and the variation with respect to Q yields:

U(ti) = U__i and U_(t,,) = Uf

which, in view of (5.6.5) is simply:

(5.8.7)

(5.8.8)0._: = U.__/and O_ = Uf
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The variation of (5.8.1) with respect to the unknown displacements yields:

E + KAU+_P + Q= 0 (5.8.9)

where F_ is the equivalent load vector and K the stiffness matrix, both obtained from the

appropriate assembly of the Lagrangian (5.6.20) of each elastic body and the constraint

(5.7.7) of each hinge. The momentum vector is:

--L,5,-05,0,...0J (5.8.10)

and Q is the vector of applied loads.

The intermediate nodal variables can be evaluated and eliminated from (5.8.9) to

give:

In a step by step integration scheme the initial displacement and momentum are known

quantities, hence AU__.i, = 0 and the corresponding quantities at the end of the time step
are:

= [p,+ F,+
P__./.f= KMAU l + Ff + Q7 (5.8.12)

Section 5.9: Numerical results and discussions

Section 5.9.1 Spinning Top

The spinning top will be investigated to test the modeling of rigid body motions

and constraint equations. The base point of the spinning top is not free to translate

but rotations are allowed. As discussed in the previous sections, this constraint can be

applied in two ways: the displacement of the base point can be constrained ( we will

refer to this case as the "D-hinge".), or the velocity of the base point can be constrained

( the "V-hinge"). The numerical accuracy and stability of these two models will be
addressed here.

The analytical solution of the spinning top case is obtained by using Euler angles

0, _, and 9. The Lagrangian of the system writes:

L=T-U

1- 2 1- 2 1- 2 (5.9.1)
= J1_1 + _r2._2+ _I._ - _,gdcos0

where ii, and wi are the moments of inertia and angular velocities in 1,2 and 3

coordinates respectively. #, g, and d represents mass density, gravitational acceleration

and the distance from the origin to the center of gravity of the body respectively. By

using the Euler angles 0, _, and _b Eq. (5.9.1) can be rewritten as:

L=211(b_sin20+_I20_+_i"_(_c°sO+_) z-Ygdc°sO (5.9.2)
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Hamilton's Principle writes:

tr t!

ti ti

(5.9.3)

Variations with respect to 8, ¢, and ¢ yield to three equations of motions.

+
6¢: _flesin 2 0 + i3(¢cost9 + z_) cos0 = PC = Constant (5.9.4)

+ = :8¢: Constant

These equations are solved by Gear's method in IMSL routine. The error tolerance is

assigned as 10 -1° . The solutions obtained by this method will be called as "analytical

solution".

Three sets of initial conditions were investigated and compared with another numer-

ical solution obtained by F.J. Mello [5-1]. The initial conditions are chosen to yield

three different types of motions.

Case 1 exhibits precession which is always in the same direction throughout in the

motion; Case 2 exhibits precession which changes sign during the motion; and Case 3

exhibits precession which does not reverse its direction but it does stop at points in its

motion (cuspidal motion).

The input data for each case is the same as Ref [5-1] given as:

Case 1:

The mass is 1.0. The axial moment of inertia is .40

The transverse moment of inertia is .75.

The initial orientation is in the yz plane +10 degrees from vertical.

The initial angular velocity is (0., .9888, 7.5167) rad/sec.

The distance from the mass center to the support is .2

Gravity is 3.0

Case 2:

The initial angular velocity is (0., .20905, 6.2964) rad/sec.

All other data are the same.

Case 3:

Initial angular velocity is (0., 0., 6.3794) rad/sec.

All other data are the same.

In this work the constraints are imposed via a Lagrange multiplier technique, and

uses a fictitious stiffnesses (5.3.8, 5.4.6). The results are sensitive to the choice of

these Lagrange multipliers, o_1 is the fictitious stiffness associated with the normality

condition of the Euler parameters representing the rigid body motion, and o_2 that the

hinge constraint. Several values were in uses as shown in table 5.1.

5 - 21



Table S.I Choices of fictitious stiffness

Fictitious stiffness for Fictitious stiffness for

Euler Parameters(o_l) Hinge Constraint(o_2)

Case (A) 10 '5 10 ?

Case (B) l0 s 108

Case (C) l0 s 1010

The motion of the spinning top was analyzed with 2,3, and 4 noded elements in

time for the various motion types, and for the different values fictitious stiffness. The

accuracy of the results is assessed by comparing the analytical solution with the numerical

predictions for the x, y, and z coordinates of the center of mass of the spinning top. Table

5.2 presents the results for the case 1 type motion. 100 time steps of At=0.06 sec were

performed. For the two noded time element the D-hinge solution diverged for all values

of the fictitious stiffnesses, the V-hinge solution was stable, but its accuracy was poor

when compared to the results of ref [5-1]. For the three noded element, the D-hinge gave

stable solutions but its accuracy is rather poor when compare to that of V-hinge which

gave answers comparable to that of ref [5-1]. Finally the four noded element gave poor

answers for the D-hinge, and very accurate predictions for the V-hinge.

These results also clearly show the need to select appropriate values of the fictitious

stiffnesses: high enough values should be selected as to properly enforce the constraint.

Fig 5.1 shows the motion of the center of mass projected in the xy plane, for the two

noded element. It is that the numerical results are ahead of the analytical solution, in

other words, the top "spins faster" in the numerical model. Fig 5.2 shows the result for

the D-hinge, however, at At=0.02 sec was selected, as At---0.06 sec yield unstable results.

Fig 5.3 and 5.4 present the results of the three and four noded elements with time

increment. Fig 5.5 through 5.9 present the results for case 2 and 3 motions. It is clear that

the D-hinge shows oscillations of increasing amplitude, typical of numerically unstable

behavior, whereas the V-hinge yields a numerically stable solution.

Fig 5.10 to 5.12 show the distance between the actual position of the base of the

spinning top, and the position it is constrained to be. Surprisingly, the V-hinge results

maintains this distance to a zero value, as it should, whereas the D-hinge results oscillate

about the zero value and eventually become unstable. Fig 5.14 through 17 show similar

results for the case 2 and 3 motion types.
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Table 5.2 Relative Displacement errors of The Top Case 1.

2-noded Element

Relative Errors (%) X Y Z

Ref [1] 0.976 1.345 0.0539

V-Hinge

(A)

(B)

(C)

88.90 6.636 2.844

129.3 -7.130 2.692

130.0 -9.196 2.672

3-noded Element

Relative Errors (%)

Ref [1]

D-Hinge

V-Hinge

(A)

(B)

(C)

(A)

(B)

(C)

X Y Z

0.308 0.176 0.0068

44.96 -10.15 2.947

10.91 4.687 1.611

6.133 5.235 1.345

38.06 14.98 0.056
rerun

4.422 - 1.221 0.040

0.350 -0.103 -0.0048

4-noded element

Relative Errors (%) X Y Z

Ref [1] 0.068 0.095 0.0022

D-Hinge

V-Hinge

(A)

(B)

(C)

(A)

(B)

(C)

-27.36 21.75 -12.46

-77.03 35.66 -15.45

-76.51 34.22 -14.94

38.05 14.96 1.0025

4.124 - 1.129 0.045

0.048 -0.017 0.0005
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Section 5.9.2 Pendulum Problem

The characteristics of the rigid link constraint will be assessed by studying the single

and double pendulum problems. Rigid link imposes the constraint of a fixed distance

between two points. For instance the pendulum problem can be seen as the motion of

a point mass in a two dimensional space subjected to the constraint of a given distance

between the origin and the mass point. In the D-link the constraint condition is that of

this fixed distance whereas in the V-link the constraint condition is the orthogonality of

the position and velocity vector for the mass point.

The analytical solution for the single and double pendulum are readily obtained and

integrated. Three problems were analyzed with the following characteristics.

Problem I : #g= 1.0 N, _ = 1.0 m/see, L = 0.2m

Problem II : _g = 10.0 N, V_ = 1.0 m/see, L = 0.2m

Problem HI: Pig = P2g =1.0 N, _1 = 1.0 m/sec,_2 = 0.0 m/see,

L1--0.2 m,L2=0.1 m.

where #g is the gravity forces, F_ the initial velocity, and L the length of the

pendulum.

Table 5.3 Choices of fictitious stiffness

Fictitious stiffness for Fictitious stiffness for

Velocity Link(av) Displacement Link(a,/)

Case (A) 10 '_ 1010

Case 03) 107 i012

Case (C) 101° 1014

Table 5.4 Relative Displacement errors

Problem I

Relative Errors (%)

D-Link

V-Link

(A)

(B)

(C)

(A)

(B)

(C)

X Y

58.79 22.46

19.06 38.67

18.53 37.15

2.61 4.60

0.40 0.51

0.43 -0.56
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Problem 11

Relative Errors (%)

D-Link

V-Link

(A)

(B)

(C)

(A)

(B)

(C)

X Y

22.62 15.13

21.95 14.62

2.27 4.95

0.28 0.09

0.30 0.15

Problem m

Relative Errors (%)

D-Link

V-Link

(A)

(B)

(C)

(A)

(B)

(C)

X Y

25.48 5.50

23.18 5.08

23.84 0.95

1.27 0.28

1.53 0.30
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Table 5.3 shows the three different cases of fictitious stiffnesses. From a number of

trial and error reasonable ranges of fictitious stiffnesses are obtained. For D-link solutions

for the single pendulum are going to be unstable in the case of aa _< 10 °. In the range of

101° - 1014 the solutions of D-link are converging for the single pendulum even though

not converging for the double pendulum. But all the solutions are not accurate. On the

other hand V-link does not seem to be sensitive to the values of fictitious stiffness a,_ ff

av is large enough. The fictitious stiffness av is investigated in the range of 10 '_ - 101°.

Table 5.4 shows the accuracies of the displacements for 2 different links. Again

V-link has much more accurate solutions than D-link. In all 3 cases V-link has solutions

with a reasonable accuracy. For problem I and II which is for the single pendulum

D-link of case (C) yields the convergent solutions though not accurate. But for problem

III which is for the double pendulum D-link cannot obtain the convergent solution while

V-link (B) and (C) has a quite accurate solution.

Fig 5.18 -- 5.20 show the results of problem I. Fig 5.17 shows the displacements

of the pendulum along the time history with D-link. From fig 5.18 the solutions arc

quite sensitive to the values of a,/. All three cases the solutions are oscillating. The best

result is from case(C) the accuracy of which is at most 18%. Fig 5.19 shows the results

with V-link. All three results are quite accurate and the best results arc from case(B)

the accuracy of which is as good as 0.5%. Those best results from D-link and V-link

are investigated from now on. Fig 5.20 is the best result of problem I from D-link and

V-link. Even though it looks identical the difference of the accuracies between the two

links is large as seen from the table 5.4. Fig 5.21 shows the results of problem II. After

200 time steps the pendulum oscillates for 5 periods. Fig 5.22 and 5.23 show the results

of problem KI which is for double pendulum. From fig 5.22 displacements of D-link arc

diverging after 165 time steps in all three cases. With this At=O.01 sees no convergent

solution was obtained. Fig 5.23 shows the results with V-link which are quite accurate

even after 400 time steps. In this double pendulum problem av = 10 '_ is not large enough

to obtain the accurate solutions. But once at, > 107 the accuracies are within 1.5 %.

Fig 5.24 shows how well the link preserves the distance from the mass point from the

origin. Again the length of V-link remains the same as accurate as 10 -'_ error while the

length of D-link is oscillating in the range of 5 % for problem I and 3 % for problem II.
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Chapter 6

Full Finite Element Modeling

Section 6.1: Introduction

The previous chapters have described the formulation of multibody dynamic problems

with a finite element based modal analysis procedure to model each elastic body. This

kind of formulation is very cumbersome, as demonstrated by the lengthy derivations and

expressions of the last chapters. Furthermore, there is a tremendous overhead associated

with modal methods consisting of the management and manipulation of all the coefficients

of the modal expansion. This results in an increased computational cost which burdens

modal analysis.

An alternate formulation is to deal directly with a full finite element model, such as

that used in chapter 4 for determining the reference solution. In this case, there is no

need to distinguish between rigid body motion and elastic motion: the actual motion of

each node is tracked by the finite procedure. Large rigid body motion results in finite

rotations, however, finite rotations were already required to properly model the large

elastic rotations. In this effort the Milenkovic parameters were used to model the finite

rotations (see appendix A). This representation of the finite rotations is preferable to the

Euler parameters as it involves three parameters only as opposed to four. This results

in improved computational efficiency.

An additional advantage of the full finite element formulation is that constraint

equations ("hinges") between two elastic bodies are much easier to formulate. In deed

the constraint only involves the degrees of freedom of two nodes, on of each body. This

contrasts with the formulation of constraint equations between elastic bodies modeled

with a modal representation which involves all the elastic and rigid degrees of freedom

of both bodies. Section 2 describes the formulation of a typical hinge in the full finite
element model.

Section 6.2: Hinge Element

Consider a hinge with two components which undergoes a relative rotation. The two

components of the hinge are defined by the triads _'A and _'ff, respectively, which are

coincident before deformation, i.e. gA = e-_,. After deformation the triad gA has become

_A (rotation tensor R(a)), and the triad _-B has become _B (rotation tensor R(b)). The

relative rotation if, between the two components is shown on Figure 6.1. The finite

rotation tensor R(t) defines the initial orientation of the hinge:

A

and after deformation, we have:

(6.2.1)

•a= R,j(a) R;,(b)eni -- enj ; -- = enj (6.2.2)
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_3*A -----"_3*B

Fig 6.1 Relative Rotation at a Hinge

Since the hinge only allows a relative rotation about _'_ = _.B, the rotation tensor

R(a) and R(b) are related by the following Constraints:

(6.2.3)

If the value of the relative rotation is desired, it can be obtained from the following

constraints:

1 _A)Ca = 4 tan -1 _-@'. - ¢ = 0 (6.2.4)

where _ is the relative rotation vector, and R(r) the corresponding finite rotation tensor.

From (6.2.2), it is clear that

e:_ = Rij(b)Rkj(b)e_ A = Rik(r)e,_ A (6.2.5)

or

R;j(,-) = R_k(b)Rik(a)

This tensor relationship can be expressed in the _A triad, as:

R(r [.1) = R(b[*])RT(a [*])

(6.2.6)

(6.2.7)
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The right hand side can be transformed to the _'. triad to yield

R(r [*]) = RT(t)RT(a)R(b)R(t) (6.2.8)

where a_b,t, are the components of the rotation vector in its base triad _'.. Using the

formula for composition of rotation, (Appendix A), the Milenkovic parameter r of the
relative rotations are found as

r__= DRT(t)(aob__-boa_+ba) ; D=aobo+aTb__+(4-ao)(4-bo) (6.2.9)

The constraints are now evaluated to yield:

Cl --- e_T.17r_T(b)_r_(a)_ -- O

C2 = eT RT(b)n(a)e_ = 0 (6.2.10)

C3 = 4 tan -1 _ aob_T - boaT + a_Tb T _._ - ¢ = 0

It is preferable to enforce the two first constraints in a differential form, whereas the last

constraint can be enforced as is since it is only used to define ¢.

¢1 = _T 2._.__T e:_e_l :T 26 T e_e_ 1 .- 0
- 4-a0

- 4-a0 - 4-b0

where e__ = R(b)e I e__ = R(b)e 2 , e* = R(a)£_- _ _ _"_

These constraints could be enforced using a penalty technique:

t!

£.=1[_(o<1C1-1-.2C.224- -I- (6.2.12)
ti

where at, a2, and _,_ am the penalty coefficients, and t is the stiffness of a torsional spring

that can be present in the hinge. It is preferable, however, to use a mixed formulation

to enforce the constraint (6.2.12) then transforms to

II

= + _ + '" dt (6.2.13)
£ F1C'I + F2C2 + FzO.a + T¢ - _ \ oq a2 c_z / 2

L

where Fi, F2, and F.a are the Lagrange multipliers associated with the three constraints,

and T the torque in the spring.

(6.2.11)
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Chapter 7

Conclusions and recommendations

Two approaches have been developed to analyze the dynamic behavior of multibody

systems. In the first approach, each elastic body is represented in a local, noninertial

frame of reference with unknown rigid body motions with respect to an inertial frame,

and a finite element based modal analysis methodology is used to model the elastic

behavior of the body. Constraint equations are used to model the interaction among

the various elastic bodies. In the second approach, all elastic bodies are represented

directly in a single inertial frame, and a full finite element methodology ( without a

modal reduction) is applied. Constraint equations are used again to model the interaction

among the elastic bodies.

The following conclusions can be drawn from the study of the finite element based

modal analysis methodology:

1. The accuracy of modal methods strongly depends on the choice of the modal basis.

2. Nonlinear kinematic couplings are poorly represented by natural vibration mode

shapes. This is easily understood since both phenomena are of a different physical nature:

one is a purely nonlinear kinematic phenomenon, the other a purely linear vibratory

phenomenon. Even a large number of orthogonal vibration modes do not "synthesize"

properly the nonlinear kinematic behavior.

3. Adding perturbation modes to the classical natural mode shapes considerably im-

proves the accuracy of modal methods. Perturbation modes contain information about the

nonlinear behavior of structures extracted from higher order derivation of the Lagrangian.

4. The nonlinearities associated with rotational dynamic effects are sometimes poorly

respected by both natural vibration mode shapes and perturbation modes, resulting in a

poor correlation for the angle of attack.

5. When accurate predictions of rotor behavior is sought, modal analysis should be

avoided, and full finite element methods should be preferred.
6. A tremendous amount of overhead is associated with nonlinear modal methods. This

involves the storage and manipulation of the many coefficients appearing in the elastic

modes. The number of coefficients grows as N" where N is the number of modes, and

n the highest power of the nonlinearities.

7. When rigid body motions are added to the elastic behavior this overhead increases

roughly tenfolds. This tremendous overhead is responsible for the very rapid increase

in computational effort required to deal with modal methods as the number of modes
increases.

8. The computational effort involved in the integration of the full finite element calcu-

lations presented in this work does not seem to be prohibitive when compared to that of

the modal analysis. This observation should not be generalized. It is clear that as the

number of degrees of freedom in the finite element model increases the cost of solution

increases as well and will eventually become more expensive than that of the modal
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solution. It seems however, that for typical rotorcraft problems the full finite element

method is directly competitive with modal solutions.

Two approaches were developed for dealing with the kinematic constraints. In the

first approach the kinematic constraints are enforced as is, whereas in the second approach

the time derivative of the constraints are enforced. In both cases a Lagrange multiplier

technique is used to enforce the constraints within the framework of a mixed formulation.

The following conclusions can be drawn from the study of the constraint equations
enforcement:

1. Enforcing the time derivative of the kinematic constraints yields numerical schemes

which are far more accurate than those obtained from enforcing the kinematic constraint
itself.

2. When kinematic constraints are enforced, the problem becomes very "stiff" due to

the presence of the larger fictitious stiffness associated with the constraint. Integration

schemes applied to these very stiff problems can easily become unstable, and this behavior

was observed in the various examples treated here. When the time derivative of the

constraint was enforced, this numerically unstable behavior disappeared.

3. Enforcing the time derivative of the kinematic constraints is only slightly more

complex than enforcing the kinematic constraint itself.

The two methods developed in this study for the analysis of multibody dynamic

systems differ only by their modeling approach for a single elastic body. The first

approach relies on a modal approximation, the other on a full finite element model.

The use of a modal approach requires modeling each elastic body in a local coordinate

system. A large overhead is associated with nonlinear modal analysis, which puts this

approach to a disadvantage when high order nonlinearities are present, and specially in

the context of multibody analysis. Furthermore the accuracy of modal methods tend to

deteriorate when nonlinearities are prominent. This discussion leads to the following
recommendations for future work:

1. For dynamic systems where nonlinear effects are not too pronounced, the finite

element based modal analysis option can be pursued, and the following features of the

modeling approach could be improved. The order of the nonlinearities could be reduced

by ignoring higher order terms in the expression of the Lagrangian expression. For

instance, keeping only quadratic terms would result in a Iinearized modeling of the system,

keeping terms up to the third order would correspond to a "moderate rotation" type

approximation. Such simplification would considerably decrease the overhead associated

with the modal approach and make it much more computationally efficient at the expense

of limiting its range of validity.

2. Constraint equations are key to efficient multibody dynamic analysis. Enforcing the

time derivative of theses constraints appears to improve numerical stability and accuracy.

Further insight could be gained by computing the internal forces associated with the

constraints. For instance, in the case of a rigid link, the load in the link is often

a quantity of primary interest which can be obtained from the time derivative of the

Lagrange multiplier used to enforce the constraint.
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3. The full finite element approach should be used in complex multibody dynamic

presenting strong nonlinearities. The resulting equations are rather "stiff", even when

the kinematic constraints are enforced in a time derivative fashion. To avoid numerical

instabilities in the integration process, it is desirable, and probably necessary to use an

integration scheme that provides high frequency numerical damping. Finite element in

time procedures based on the time discontinuous Galerkin method might be well suited

for this type of problems.

4. The determination of the physical stability boundaries of a multibody system is an

important problem. With a modal analysis involving a small number of degrees of

freedom classical techniques such as the characteristic exponent method or the Floquet

theory approach can be readily used. However, with the full finite element approach such

method breaks down because of the presence of a large number of degrees of freedom.

Innovative methods should be developed to deal with this situation.
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Appendix A: Parametrization of Finite Rotations.

Section A.I: The Geometric Representation of Finite Rotation

Consider a finite rotation of magnitude _ about an axis q (unit vector) and an arbitrary vector _.

Let the rotation _, _7 bring this vector to b. From Figure A. 1 it is clear that:

b= O'C + CB =ll _ II cos,, _+ II g II sina [_'cos ¢ +/'sin ¢] (gl.1)

where the unit vectors g" and/. are defined as:

ff x _ (ff x _) x ff (A1.2)
/.= II_x_ll; z=/.x,Z= II_x _11

.. _T\,

!

v

Figure A. 1 Change of Basis Viewed as a Single Rotation

The fundamental property of rotation is to preserve length, hence:

(,z. _) =11_ IIcos_ =11g'llcos_; II_ x _ I1=11a"IIsin_ =11g IIsin_

Equation (AI.1) now becomes:

g= (_z.a'),z+ (,z x a') x _ cos_ + (,z x a')sin

For a unit vector q, the foUowing relation can be shown to hold:

(_.,i),_ = ,_+,_ x (_ x ,_)

(A1.3)

(A1.4)

(A1.5)
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so that (A1.4) becomes:

= _ + sin _(,_x _) + (1- ¢os_),_x (,_ x _). (A1.6)

Section A.2: The Rotation Tensor

We wish to transform the above geometric notation into a tensor, index notation. For practical

implementations it is necessary to work with tensor components in a particular system. The following
notations will be used:

Geometric notation Tensor notation Tensor component notation

ff ui u

_. _ uivi ttT_

x _ = -3 x _ &j(u)vj = -&j(v)_,_ C,v__= -_,_

Sij is a skew symmetric tensor which components are:

0 --u3 u2

Sij(U) = U3 0 --it 1

--u2 Ul 0

This tensor has the following properties that are readily verified:

&Au) = -si_(u),

and Sik(u)Skj(u) is a symmetric tensor. When ui is a unit vector, then

&k(u)&t(u)S,Au) = -s_i(_)

In tensor notation (A1.6) becomes:

bi = Rijaj

where the rotation tensor Rij is given as:

Rij(u) = 6i.i + sin q_So(u) + (I - cosc_)Si_:(u)Skj(u)

and

.%(u) = Ri_(-,_)

(A2.1)

(A2.2)

(A2.3)

(A2.4)

(A2.5)

(A2.5a)
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An interesting expression can be found by expanding the trigonometric function in series and using

(A2.3):

or

Rij(r) = _ij+ Sij(r)+ Sik(r)Skj(r)+ _.Sik(r)Skt(r)Stj(r)+'" hot

=

where the rotation vector ri is defined as ri = Cui.

The following fundamental property of the rotation tensor can be readily verified:

RikRjk = RkiRkj = $ij

which implies:

det(Rij) = 1

The eigenvalues )_ and corresponding eigenvector ei of the rotation tensor are:

A = I; ei = ui

.k = cos ¢ 4- _/-ZTsin ¢; ei = ai + v/-Zlbi

where ai is an arbitrary vector normal to ui, i.e.

aiui = 0 and bi = Sij(a)uj

(A2.6a)

(A2.6b)

(A2.7)

(A_.8)

(A2.9)

(A2.9a)

Section A.3: The Angular Velocity Vector

A time derivative of (A2.7) yields:

T

which implies that this tensor is skew symmetric, hence we can write:

where wi is the angular velocity vector. With the helps of (A2.5) we find:

Sij(w) = ¢Sij(u) + sin ¢Sij(it) + (1 - cos ¢)[Sik(it)Sjk(u) - Sjk(it)Sik(u)],

where the following identity was used:

it = O.

An ahemate writing is:

wi = Cui + sin ¢iti + (1 -cos¢)S,j(u)itj.

(A 3.1 )

(A3.2)

(A3.3)

(A3.4)

(A3.5)
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Section A.4: The Virtual Rotation Vector.

The virtual rotation vector can be defined by analogy to the angular velocity vector as:

S;j(6¢) = _R;kRjk, (A4.1)

where 6¢i are the components of the virtualrotationvector.Note thatthere.isno vector ¢, such that

6(¢i) isthe virtualrotation.Taking a variationof A3.2 and a time derivativeof A4.1 yields:

&j(6w) = ,_/%_kRjk+/%_k,_Rjk

which, after subtraction becomes:

(A4.2)

(A4.3)

In view of the orthogonality of the rotation tensor A2.7, this becomes:

S,j(_i_) + S,t(_¢)S,_(_)- S,,(_)S,j(_¢).Sij(6w)

The following identity:

Sit(a)Stj(b)- Sit(b)Stj(a)= S,j(Skz(a)bt)

then yields:

and finally:

= s,,(6J:)+

(A4.4)

(A4.5)

(A4.6)

(A4.7)

This important relationship relates the variation of the angular velocity vector to the virtual rotation
vector and its derivatives.

Section A.5: Change of Basis

Consider a basis b 1 defined by the unit vectors _11,_ and _ and an arbitrary vector ft. Let R(u])

be a rotation vector applies to each one of these vector to yield basis b2 defined by _2), _,2), _2)2 ,_ and
the vector E2, (A2.4) yields:

a i = Rij
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This tensor relationship can be expressed in component form as:

a2[1]-- R(ul[1])aa[ 1]

where the notation 0 [1] is used to express the components of a tensor in the basis b1.

(A5.2)

b_ R(u')

-"a 1

Figure A.2 Change of Basis

It is clear that the components of ,_1 in basis b1 are identical to the components of _2 in the base

b2, i.e.:

a 1[11 "- a 2121 (A5.3)

hence (A4.2) becomes:

a_2[1] = R (ul[1]) a212] (A5.4)

Since the starting vector _1 is arbitrary this relationship holds for any vector, and more generally

we can write the transformation law of the components of a vector _" as:

v [1]
"- R _u111] ] v__[2]/" _ or v__[2] _ /_T [ '__u111]) v[1]

It is also clear that the rotation vector has the same components in the two basis, hence:

R(/t 1[1]) -- R(_t 112])

(A5.5)

(A5.6)

Consider now a second order tensor such as Tij = aibj, where ai and bj are two arbitrary vectors.

In component form we have:

T [1] = a[1]b[1]T; T [2] = a[2]b [2]T (A5.7)
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With the helps of (A4.5) the transformation law for second order tensor component is found as:

T [2] = R T (ul[1]'_T[1]R(ul[1]" _ (A5.8)
k / k /

Finally, consider a set of basis b 1, b2... , bn obtained by successive rotation R(ul), R(u2)..., R(u")

and let R(r) be the rotation from base b I to base bn. Repetitive application of (A4.1) yields:

Rij(r) = Rik(un-1)Rkl(u"-2) ... Rzm(u2)Rmj(u 1) (A5.9)

In component form, the following expressions hold:

R(r [1]) = R(r ["]) = R(un-l[n])R(un-2['])... R(u2[n])R(ul[n]) , (A5.10)

R(r [1]) = R(r [hI) --- R(un-l[1])R(ttn-2[1] ) .../{(u211])R(ul[1]), (A5.11)

R(rill) = R(rin]) = R(ul[1])R(u2[2])'" R(u'_-2['_-2])R(un-l["-l]), (A5.12)

where the last expression can be obtained from the first or second through repetitive use of the second

order tensor component transformation law (A4.8). These various relationships can also be viewed as

composition of rotations: the rotations u 1, u 2, ...,u "-2, u"-1 are applied successively to yield a

single composed rotation r.

Section A.6: Euler Parameters

The rotation tensor (A2.5) is expressed in terms of the rotation vector ff and the magnitude of the

rotation ¢. An alternate representation is in terms of the Euler Parameters defined as follows:

q0 = cos 2' qi = uisin ; i = 1,2,3 (A6.1)

to yield the rotation tensor (A2.5) as:

Rij(q) = 6q + 2qoSq(q) + 2Sik(q)Sk.i(q) (A6.2)

or
2 2 2 2

qo + ql - q2 - q3

R(q) = | 2(qlq2 + qoq3)

[ 2(qlqa - qoq2)

2(qlq2 - qoq._)

qo2 _ ql2 + q2_ q2

2(q2q,3 + qoql)

2(q q3+qoq2)]
2(q2q.3 - qoql) |
2 2 2 2

qo - q l - q2 + q3 J

(A6.3)

All trigonometric functions have now disappeared from the rotation tensor. It is important to note

the redundancy in the representation since four parameters are used when in fact only three parameters

are required. This redundancy is clear when considering the definition A6.1 which yields the normality
condition:

q02 + ql2 + q2 + q2 = 1. (A6.4)
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The angularvelocity tensor(A3.3) becomes:

Sij(w) = 2qoSij((t) - 2(toSij(q) + 2[Sik((t)Sjk(q) - Sjk((I)Sit(u)]

and the corresponding angular velocity vector is:

(A6.5)

wi = 2qoili - 2(loqi + 2S0(q)_i (A6.6)

or

where

w(q) = 2

-qlqo + qoql - q3q2 + q2q3

-q2qo + q3ql + qoq2 - qlq3

--q3qo -- q2ql + qlq2 + qoq3

H(q) =

-ql qo -q3 q2

-q2 q3 qo -ql

-q3 -q2 ql qo

= 2H(q)_ (A6.7)

(A6.8)

The components of the angular velocity vector in the rotating system are found by using (A5.5):

where

w__*(q) = RT(q)w_.(q)= 2G(q)q_"

-q1 qo q3 -q2]
G(q) = -q2 -q3 qo ql

-q3 q2 -ql qo

(A6.9)

(A6.10)

These matrices present the following remarkable properties:

H(q)HT(q) = G(q)GT(q) = I, (A6.11)

R(q) = H(q)GT(q); G(q)= RT(q)H(q); H(q)= R(q)G(q);

HT(q)H(q) = GT(q)G(q) = I4 - qqT; H(q)q_ = G(q)q_ = 0

R((t) = 2H(q)GT((t)= 2H(?t)GT(q)

& = R(dt)RT(q)= 2H((1)HT(q); &* = RT(q)R((t)= 2G(q)GT((l);

(A6.12)

(A6.13)

(A6.14)

(A6.15)

Section A.7: Composition of Rotations with the Euler Parameters

Since all trigonometric functions have been eliminated from the rotation tensor and angular velocity

vector when expressed in terms of Euler Parameters, all finite rotation operations can be expressed in
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componentform usinga purely algebraicformalism. This task is easedwhen the following matrices
are defined:

qo -ql -q2 --q3]
A(q)= ql qo -q3 q2

q2 q3 qo -ql

q3 -q2 ql qo

qo -ql -q2 -q31

JB(q) = ql qo q3 -q2
q2 -q3 qo ql

q3 q2 -ql qo

qo ql q2 q3 ]

JC(q)= ql -q0 q3 -q2
q2 --q3 --q0 q_

q3 q2 --ql --q0

o]D(q) = R(q)

(A7.1)

(A7.2)

(A7.3)

(A7.4)

Let q_T = (q0, ql, q2, q3) and r__T = (ro, rl, r2, r.a) be the Euler Parameters of two rotations in specific

axes. The following formulae are readily verified:

G(q)r_=-G(r)q_; H(q)r_=-H(r)q;

A(q)BT(r) = BT(r)A(q)
(A7.5)

A(q)r_ = B(r)q; AT(q)r -- CT(r)q; BT(q)r = C(r)q; (A7.6)

D(q) = A(q)BT(q) = BT(q)A(q) = C(q)C(q).

Furthermore, the normality condition results in the orthogonality of these matrices

AT(q)A(q) = A(q)AT(q) = /4; BT(q)B(q)= B(q)BT(q)= /4;

CT(q)C(q) = C(q)CT(q) = It; DT(q)D(q) = D(q)DT(q) = I4.

(A7.7)

(A7.8)

From the definition of the angular velocity vector we find:

w__= 2BT(q)_; A(_)= 2A@AT(q); B@)= 2BT(q)B((Z)

__* = 2AT(q)?I; A(w') = 2AT(q)A((t); B(w*) = 2B((t)BT(q)
(A7.9)

With the help of the above relationships, the composition of rotation formula A5.12 can be shown

to imply:

A(r [1])

B(r [1])

= A(q1[1])A(q2[2]) ... A(q n-l[n-1])

= B(qn-l[n-1])...B(q2[2])B(q 1[1])

(A7.10)
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or

or

 ,iJ_A(ql,1,)A(q2,2J)A(q° 2,)C1E-1,

An alternative representation of composition of rotation such as A5.11 implies:

A(r[1])= A (qn-l[1])A (qn-2[1])'"A (q2[1])A (ql[1])

= B (q111])B (q211])''- B (qn--2[X])B (qn- 1[1])

v__[1] = m (qn-l[1])A (qn-2[1])'"m (q2[1])q 111]

v__[1] = B (ql[1])B (q2[1])''' B (qn-2[1])q_n- 1[1]

(A7.11)

(A7.12)

(A7.13)

Section A.8: Rodrigues' Parameters

Rodrigues' Parameters can be defined in relation to the Euler Parameters as:

so that their geometric interpretation is:

ri = 2 q-(, (A8.1)
qo

ri 2ui t ¢
= g_. (A8.2)

It is clear that this representation presents an obvious singularity r i --4 0o when ¢ _ -i-Tr. Relationship

A8.1 can be inverted to yield:

where:

i ri

q0 = (1 + r2_41/2;/) qi = 2(1 + r2/4) 1/2 (A8.3)

_= _ + r_+ rl (A8.4)

The rotation tensor follows from A6.3and A8.3:

1 + r2/4 r._ +r3

Lt__ r2

E-_-- r 3

r42ra+ r 1

L_q-r 2

r2rm. --rl

The components of the angular velocity vector are obtained from A6.7 and A8.3:

w___=Gi

(A8.5)

(A8.6)
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where

a

1 + r2/4
1

1
(A8.7)

Section A.9: Milenkovic Parameters

The Milenkovic Parameters can be defined in relation to the Euler Parameters as:

4qi
ai - i = 0, 1, 2, 3,

1 +q0

so that their geometric interpretation is:

(A9.1)

ai = 4ui tan ¢
--.

4

Note that these parameters present no singularity within the range -rr < ¢ < rr.

can be inverted to yield:

(A9.2)

Relationship A9.1

ai
qi = _ i = 0,1,2,3.

4 - a0

The parameter a0 can expressed in terms of the other three as:

(A9.3)

a0 = (16- a2)/8

where

a 2 = al2 + a22 + a 2

This representation involves 3 parameters only al, a2, and

formulae to simplify the notation.

The rotation tensor follows from A6.3:

2 2 2 2
[ a0 + a 1 -- a 2 -- a 3 2(ala2 -- a0a3)

1 / 2(ala2 q- a0a3) a 2 -- al2 -1-a 2 -- a 2R(a) -

(A9.4)

(A9.5)

a3, however a0 is used in the various

2(ala3 + a0a2) ]

2(a2a3 -- aoal) I
2 2 2 2

a 0 -- a 1 -- a 2 -t- a3 J

(A9.6)

The components of the angular velocity vector are obtained from A6.7 and A9.3:

where

2
= _Ga_"

-- 4 -- ao

1
G-

4 - ao

ao + _ -_ - a3 -_-a + a2

q_ + a3 ao + _ - al

ao+ 
This matrix has the following remarkable properties:

GG = R; GG T = GT G = I; Ga = GT a = a

(A9.7)

(A9.8)

(A9.9)
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The components of the angular velocity vector in the rotating system are then:

, 2
w - GT__
-- 4 - ao

(A9.10)

where

The matrix G is orthogonal, hence the following properties can be obtained:

1 HA
_GT = 7t'; '7-- 4 -- ao

GT _ ., , 1 HT 8
=7 , 7__ -- 4--a0 -

S

This matrix has the following properties:

GH T = H;

1 _a._4
1 -_4

GTH = HT; Ha = a_

(A9.11)

(A9.12)

(A9.13)

Other matrix functions of the Milenkovic Parameters also play an important role.

matrices are defined for an arbitrary vector _.b:

and

I[HTbT la._bT] ;D(b)- 4 a0

--4-a0 _ 8b-a. =4 "a0 _ __bI ;

D*(b) = 4 -1[H_ao - _a-'bT] "

_14 -ao [b"kl(Sb-a'bT)]-4 -- = 4 -aol [41-_"-b+ b - 41-(aT'b) I]

I[HbT la._bT] ;E(b) = 4 ao

--4 ._la0 [-b - 1 (Sb + a_.b_T)]
"--" n

4 -- a0 -b- ....

The following

(A9.14a)

(A9.14b)

(A9.15a)

The off-diagonal terms of the D matrices are skew symmetric as can be seen from expanding their

definition:

= do -d._ d2 . d l _ 1 -1 -_ _-_ ," (A9. 16a)

- -I LbzJD(b) d3 do -dl , d2 4 - ao _'q_"
-d2 dl do d.3
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In contrast the off diagonal terms of the E matrices are not skew-symmetric

These matrices enjoy remarkable properties:

CD(b_)ar=D(Gb_);arD(b_)G=D(C_'__);

RD(b)RT= D(Rb); RTD(b_)R = D(RTb_);

(A9.16b)

(A9.17a)

GE(b)GT= E(Gb_.); GTE(b)G = E(GTb);

RE(b)RT= E(Rb); RTE(b__)R = E(RTb);

GD*(b)GT= D*(G_b); GTD*(b__)G = D*(GTb__);

RD*(b__)RT= D*(R_.b); RTD*(b__)R = D*(RTb__);

Furthermore, they are related as follows:

(A9.17b)

(A9.17c)

D(b)c = ET(c)_.b; D*(b)c = E(c)b;

GD(b__)= E(_b); D(b)G = E(GTb_);

G TD*(b_) = zT(b_.); D*(b_.)G T = ET(Gb);

E(b__)_= D r(__)k

(A9.18)

where both b__and c are arbitrary vectors.

These matrices appear when taking derivative of expressions containing Milenkovic Parameters.

For instance, one can readily verify that:

'°- ,' :0,'O

(A9.19)

Finally, derivatives of these matrices become:

_(D(b)c) = X(__b, c)Sa_ + ET(c),Sb + D(b)_c (A9.20)
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where

=
4 4 a0

(A9.21)

where

6(E(__b)c) = r(b_.,c__)6a_+ D*(c_.)6b_.+ E(b)&_

y(__b,_c)= 1 1 [_T ( ) ]4 4 - ao + bTc- I + (E(b)c_).a T .

(A9.22)

(A9.23)

Composition of rotation is easily obtained from the corresponding relationships for the Euler

Parameters. Let fi and gi be the Milenkovic Parameters of two successive rotations, and ai the

parameters of the resulting rotation, then A7.4 yields:

a A(f)g
m

4 - a0 (4 - f0)(4 - go) (A9.24)

Computing a0 from the first equation we obtain:

4A(f)g_

a_ = (4 - f0)(4 - go) - logo - figi (A9.25)

Other useful relationships can be readily obtained from the corresponding relationships on the Euler
Parameters.

Within the range of -_- < ¢ _< rr the Milenkovic Parameters present no singularities since

-4 < ai <_ +4 and 0 _< a0 _< 2, (A9.26)

furthermore the orthogonality of the matrix G always yields a well defined angular velocity. However

restricting the range of ¢ would limit the range of admissible rotations. Hence, then definition of the

Milenkovic Parameters is generalized to allow any magnitude of rotation:

ai =4ui tg _ q- k k even

4ui tg -_ + ( k -1) k odd

where -Tr < ¢ < zr , and due to the following trigonometric identifies:

(A9.27)

k even;

(A9.28)

it is clear that the bounds A9.16 remain valid. If, at an instant during the motion of the structure, the

rotation reaches, let say, the upper bound, i.e.:

¢ = zr + e e > 0 (A9.29)
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or, in terms of the parameters:

a 2 >_ 16 (A9.30)

one passes from the current state to a complementary one (i.e. from an even state to an odd one) to

remain within bounds:

¢ ---* Ct = ¢ - 2rr; k--,k'--k+l

The corrected value of the parameters is:

t 71"

a i=4uitg -_+(k'-l) =4uitg _+k

= 4ui tg

(A9.31)

ab can be shown to transform similarly so that:

' _16ai/a 2a i --

and finally:

(A9.32)

i = 0, 1, 2, 3 (A9.33)

a'= 16/a (A9.34)

which clearly shows that the passage to a complementary state decreases the norm of the Milenkovic

Parameters.
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